Skip to main content
Log in

A New Parametrization of Mixing Length in an Urban Canopy Derived from a Large-Eddy Simulation Database for Tokyo

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Average horizontal wind velocity in an urban canopy is mainly determined by a balance between flow deceleration caused by the drag force of buildings and flow acceleration from the momentum flux gradient in the canopy. To express the transport of momentum in an urban canopy, mixing length is often used to calculate diffusivity there. A new parametrization for mixing length is introduced for a one-dimensional multilayer urban canopy model (UCM). A database from large-eddy simulations using actual urban morphology for Tokyo is used for this parametrization. The derived mixing length is described as a function of the non-dimensional height raised to the power of \(q\), where \(q < 1\). The \(q\) value and constants of the function also depend on the selection of canopy height. The mixing length profile is closely related to that of the average plane area index of the buildings in the study area. Recalculation of mean horizontal wind velocity using the new parametrization of mixing length for Tokyo slightly improved the multilayer UCM results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Blackadar AK (1962) The vertical distribution of wind and turbulent exchange in neutral atmosphere. J Geophys Res 67:3095–3102

    Article  Google Scholar 

  • Castillo MC, Inagaki A, Kanda M (2011) The effects of inner and outer layer turbulence of a convective boundary layer in the near-neutral inertial sublayer over an urban-like surface. Boundary-Layer Meteorol 140:453–469

    Article  Google Scholar 

  • Coceal O, Belcher SE (2004) A canopy model of mean winds through urban areas. Q J R Meteorol Soc 130:1349–1372

    Article  Google Scholar 

  • Coceal O, Thomas TG, Castro IP, Belcher SE (2006) Mean flow and turbulence statistics over groups of urban-like cubical obstacles. Boundary-Layer Meteorol 121:491–519

    Article  Google Scholar 

  • Gambo K (1978) Notes on the turbulence closure model for atmospheric boundary layers. J Meteorol Soc Jpn 56:466–480

    Google Scholar 

  • Grimmond CSB, Blackett M, Best MJ, Barlow J, Baik J-J, Belcher SE, Bohnenstengel SI, Calmet I, Chen F, Dandou A, Fortuniak K, Gouvea ML, Hamdi R, Hendry M, Kawai T, Kawamoto Y, Kondo H, Krayenhoff ES, Lee S-H, Loridan T, Martilli A, Masson V, Miao S, Oleson K, Pigeon G, Porson A, Ryu Y-H, Salamanca F, Shashua-Bar L, Steeneveld GJ, Tombrou M, Voogt J, Young D, Zhang N (2010) The international urban energy balance models comparison project: first results from phase 1. J Appl Meteorol Clim 49:1268–1292

    Article  Google Scholar 

  • Grimmond CSB, Blackett B, Best MJ, Baik J-J, Belcher SE, Beringer J, Bohnenstengel SI, Calmet I, Chen F, Coutts A, Dandou A, Fortuniak K, Gouvea ML, Hamdi R, Hendry M, Kanda M, Kawai T, Kawamoto Y, Kondo H, Krayenhoff ES, Lee S-H, Loridan T, Martilli A, Masson V, Miao S, Oleson K, Ooka R, Pigeon G, Porson A, Ryu Y-H, Salamanca F, Steeneveld GJ, Tombrou M, Voogt JA, Young DT, Zhang N (2011) Initial results from Phase 2 of the international urban energy balance model comparison. Int J Climatol 31:244–272

    Article  Google Scholar 

  • Ihara T, Genchi Y, Sato T, Yamaguchi K, Endo Y (2008) City-block-scale sensitivity of electricity consumption to air temperature and air humidity in business districts of Tokyo, Japan. Energy 33:1634–1645

    Article  Google Scholar 

  • Inagaki A, Castillo MC, Yamashita Y, Kanda M, Takimoto H (2012) Large eddy simulation study of coherent flow structures within a cubical canopy. Boundary-Layer Meteorol 142:207–222

    Article  Google Scholar 

  • Kanda M, Inagaki A, Miyamoto T, Gryschka M, Raasch S (2013) A new aerodynamic parametrization for real urban surfaces. Boundary-Layer Metetorol 148:357–377

    Article  Google Scholar 

  • Kawamoto Y, Ooka R (2009) Development of urban climate analysis model using MM5 Part 2—incorporating an urban canopy model to represent the effect of buildings. J Environ Eng 74:1009–1018

    Article  Google Scholar 

  • Kikegawa Y, Genchi Y, Yoshikado H, Kondo H (2003) Development of a numerical simulation system toward comprehensive assessments of urban warming countermeasures including their impacts upon the urban building’s energy-demands. Appl Energy 76:449–466

    Article  Google Scholar 

  • Kikegawa Y, Tanaka A, Ohashi Y, Ihara T, Shigeta Y (2014) Observed and simulated sensitivities of summertime urban surface air temperatures to anthropogenic heat in downtown areas of two Japanese Major Cities, Tokyo and Osaka. Theor Appl Climatol 117:175–193

    Article  Google Scholar 

  • Kondo H, Liu F-H (1998) A study on the urban thermal environment obtained through a one-dimensional urban canopy model. J Jpn Soc Atmos Environ 33:179–192 (in Japanese)

    Google Scholar 

  • Kondo H, Kikegawa Y (2003) Temperature variation in the urban canopy with anthropogenic energy use. Pure Appl Geophys 160:317–324

    Article  Google Scholar 

  • Kondo H, Genchi Y, Kikegawa Y, Ohashi Y, Yoshikado H, Komiyama H (2005) Development of a multi-layer urban canopy model for the analysis of energy consumption in a big city: structure of the urban canopy model and its basic performance. Boundary-Layer Meteorol 116:395–421

    Article  Google Scholar 

  • Kondo H, Tokairin T, Kikegawa Y (2008) Calculation of wind in a Tokyo urban area with a mesoscale model including a multi-layer urban canopy model. J Wind Eng Ind Aerodyn 96:1655–1666

    Article  Google Scholar 

  • Kondo J, Akashi S (1976) Numerical studies on the two-dimensional flow in horizontally homogeneous canopy layers. Boundary-Layer Meteorol 10:255–272

    Article  Google Scholar 

  • Kusaka H, Kondo H, Kikegawa Y, Kimura F (2001) A simple single layer urban canopy model for atmospheric models: comparison with multi-layer and slab models. Boundary-Layer Meteorol 101:329–358

    Article  Google Scholar 

  • Lee S-H, Park S-U (2008) A vegetated urban canopy model for meteorological and environmental modelling. Boundary-Layer Meteorol 126:73–102

    Article  Google Scholar 

  • Leonardi S, Castro IP (2010) Channel flow over large cube roughness: a direct numerical simulation study. J Fluid Mech 651:519–539

    Article  Google Scholar 

  • Letzel MO, Krane M, Raasch S (2008) High resolution urban large-eddy simulation studies from street canyon to neighborhood scale. Atmos Environ 42:8770–8784

    Article  Google Scholar 

  • Martilli A, Clappier A, Rotach MW (2002) An urban surface exchange parametrization for mesoscale models. Boundary-Layer Meteorol 104:261–304

    Article  Google Scholar 

  • Martilli A, Santiago JL (2007) CFD simulation of airflow over a regular array of cubes. Part II: Analysis of spatial average properties. Boundary-Layer Meteorol 122:635–654

    Article  Google Scholar 

  • Maruyama T (1993) Optimization of roughness parameters for staggered arrayed cubic blocks using experimental data. J Wind Eng Ind Aerodyn 46–47:165–171

    Article  Google Scholar 

  • Mellor GL, Yamada T (1974) A hierarchy of turbulence closure models for planetary boundary layers. J Atmos Sci 31:1791–1806

    Article  Google Scholar 

  • Monin AS, Yaglom AM (1971) Statistical fluid mechanics: mechanics of turbulence, vol I. The MIT Press, Cambridge, 769 pp

  • Ohashi Y, Genchi Y, Kikegawa Y, Kondo H, Yoshikado H, Hirano Y (2007) Influence of air-conditioning waste heat on air temperature in Tokyo office areas during summer: numerical experiments using an urban canopy model coupled with a building energy model. J Appl Meteorol Climatol 46:66–81

    Article  Google Scholar 

  • Raasch S, Schröter M (2001) PALM—a large-eddy simulation model performing on massively parallel computers. Meteorol Z 10:363–372

    Article  Google Scholar 

  • Salamanca F, Martilli A, Tewari M, Chen F (2011) A study of the urban boundary layer using different urban parameterizations and high resolution urban canopy parameters with WRF. J Appl Meteorol Climatol 50:1107–1128

    Article  Google Scholar 

  • Tanaka S, Sugawara H, Narita K, Yokoyama H, Misaka I, Matsushima D (2011) Zero-plane displacement height in a highly built-up area of Tokyo. Sola 7:93–96

    Article  Google Scholar 

  • Thatcher M, Hurley P (2012) Simulating Australian urban climate in a mesoscale atmospheric numerical model. Bound-Layer Meteorol 142:149–175

    Article  Google Scholar 

  • Tokairin T, Kondo H, Yoshikado H, Genchi Y, Ihara T, Kikegawa Y, Hirano Y, Asahi K (2006) Numerical study on the effect of buildings on temperature variation in urban and suburban area in Tokyo. J Meteorol Soc Jpn 84:921–937

    Article  Google Scholar 

  • Watanabe T, Kondo J (1990) The influence of canopy structure and density upon the mixing length within and above vegetation. J Meteorol Soc Jpn 68:227–235

    Google Scholar 

  • Xie Z-T, Coceal O, Castro IP (2008) Large-eddy simulation of flows over random urban-like obstacles. Boundary-Layer Meteorol 129:1–23

    Article  Google Scholar 

  • Yokoyama O, Gamo M, Yamamoto S (1979) The vertical profiles of turbulent quantities in the atmospheric boundary layer. J Meteorol Soc Jpn 57:264–272

    Google Scholar 

Download references

Acknowledgments

This study was supported by the Research Program on Climate Change Adaptation, promoted by the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Kondo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondo, H., Inagaki, A. & Kanda, M. A New Parametrization of Mixing Length in an Urban Canopy Derived from a Large-Eddy Simulation Database for Tokyo. Boundary-Layer Meteorol 156, 131–144 (2015). https://doi.org/10.1007/s10546-015-0019-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-015-0019-7

Keywords

Navigation