Skip to main content
Log in

Comprehensive Parametrization of Surface-Layer Transfer Coefficients for Use in Atmospheric Numerical Models

  • Research Note
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

A new non-iterative bulk parametrization for surface-layer transfer coefficients for momentum and heat is presented. It is applicable for a wide range of aerodynamic and thermal roughness lengths, and includes the effect of the roughness sublayer. As a consequence, the non-iterative method is suitable for every surface type, especially for urban surfaces for which existing non-iterative parametrizations fail. The analytical approximation compares very well with an iterative approach. Our method can be easily implemented in atmospheric numerical models that already employ a non-iterative approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Andreas EL, Murphy B (1986) Bulk transfer coefficients for heat and momentum over leads and polynas. J Phys Oceanogr 16: 1875–1883

    Article  Google Scholar 

  • Arya SP (2001) Introduction to micrometeorology, 2nd edn. Academic Press, San Diego, 420 pp

  • Beljaars ACM, Holtslag AAM (1991) Flux parameterization over land surfaces for atmospheric models. J Appl Meteorol 30: 327–341

    Article  Google Scholar 

  • Blümel K (2000) An approximate analytical solution of flux–profile relationships for the atmospheric surface layer with different momentum and heat roughness lengths. Boundary-Layer Meteorol 97: 251–271

    Article  Google Scholar 

  • Businger JA (1966) Transfer of momentum and heat in the planetary boundary layer. In: Proceedings of the symposium on the Arctic heat budget and atmospheric circulation, pp 305–331

  • Byun DW (1990) On the analytical solution of flux–profile relationships for the atmospheric surface layer. J Appl Meteorol 29: 652–657

    Article  Google Scholar 

  • Cheng YG, Brutsaert W (2005) Flux–profile relationships for wind speed and temperature in the stable atmospheric boundary layer. Boundary-Layer Meteorol 114: 519–538

    Article  Google Scholar 

  • De Bruin HAR, Ronda RJ, Van De Wiel BJH (2000) Approximate solutions for the Obukhov length and the surface fluxes in terms of bulk Richardson numbers. Boundary-Layer Meteorol 95: 145–157

    Article  Google Scholar 

  • De Ridder K (2010) Bulk transfer relations for the roughness sublayer. Boundary-Layer Meteorol 134: 257–267

    Article  Google Scholar 

  • Demuzere M, De Ridder K, van Lipzig NPM (2008) Modeling the energy balance in Marseille: sensitivity to roughness length parametrizations and thermal admittance. J Geophys Res 113: 1–19

    Article  Google Scholar 

  • Dyer AJ (1967) The turbulent transport of heat and water vapour in an unstable atmosphere. Q J R Meteorol Soc 93: 501–508

    Article  Google Scholar 

  • Garratt JR (1992) The atmospheric boundary layer. Cambridge University Press, Cambridge, 316 pp

  • Guo X, Zhang H (2007) A performance comparison between nonlinear similarity functions in bulk parameterization for very stable conditions. Environ Fluid Mech 7: 239–257

    Article  Google Scholar 

  • Holtslag AAM, Ek M (1996) Simulation of surface fluxes and boundary-layer development over the pine forest in HAPEX-MOBILHY. J Appl Meteorol 35: 202–213

    Article  Google Scholar 

  • Launiainen J (1995) Derivation of the relationship between the Obukhov stability parameter and the bulk Richardson number for flux–profile studies. Boundary-Layer Meteorol 76: 165–179

    Article  Google Scholar 

  • Lee HN (1997) Improvement of surface flux calculations in the atmospheric surface layer. J Appl Meteorol 36: 1416–1423

    Article  Google Scholar 

  • Li Y, Gao Z, Lenschow DH, Chen ZF (2010) An improved approach for parameterizing surface-layer turbulent transfer coefficients in numerical models. Boundary-Layer Meteorol 137: 153–165

    Article  Google Scholar 

  • Louis J-F (1979) A parametric model of the vertical eddy fluxes in the atmosphere. Boundary-Layer Meteorol 17: 187–202

    Article  Google Scholar 

  • Mascart P, Noilhan J, Giordani H (1995) A modified parameterization of flux–profile relationships in the surface layer using different roughness length values for heat and momentum. Boundary-Layer Meteorol 72: 331–344

    Article  Google Scholar 

  • Monin AS, Obukhov AM (1954) Dimensionless characteristics of turbulence in the surface layer of the atmosphere. Trudy Geofiz Inst Akad Nauk SSSR 24: 163–187

    Google Scholar 

  • Paulson CA (1970) The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J Appl Meteorol 9: 857–861

    Article  Google Scholar 

  • Physick WL, Garratt JR (1995) Incorporation of a high-roughness lower boundary into a mesoscale model for studies of dry deposition over complex terrain. Boundary-Layer Meteorol 74: 55–71

    Article  Google Scholar 

  • Pleim JE (2006) A simple, efficient solution of flux–profile relationships in the atmospheric surface layer. J Appl Meteorol Climatol 45: 341–347

    Article  Google Scholar 

  • Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in FORTRAN: the art of scientific computing, 2nd edn. Cambridge University Press, Cambridge, 934 pp

  • Ridders CJF (1979) A new algorithm for computing a single root of a real continuous function. IEEE Trans Circuits Syst 26: 979–980

    Article  Google Scholar 

  • Sarkar A, De Ridder K (2010) The urban heat island intensity of Paris: a case study based on a simple urban surface parametrization. Boundary-Layer Meteorol 138: 511–520

    Article  Google Scholar 

  • Song Y (1998) An improvement of the Louis scheme for the surface layer in an atmospheric modelling system. Boundary-Layer Meteorol 88: 239–254

    Article  Google Scholar 

  • Sugawara H, Narita K (2008) Roughness length for heat over an urban canopy. Theor Appl Climatol 95: 291–299

    Article  Google Scholar 

  • Uno I, Cai XM, Steyn DG, Emori S (1995) A simple extension of the Louis method for rough surface layer modeling. Boundary-Layer Meteorol 76: 395–409

    Article  Google Scholar 

  • van den Hurk B, Holtslag A (1997) On the bulk parameterization of surface fluxes for various conditions and parameter ranges. Boundary-Layer Meteorol 82: 119–133

    Article  Google Scholar 

  • Van Weverberg K, De Ridder K, Van Rompaey A (2008) Modeling the contribution of the Brussels heat island to a long temperature time series. J Appl Meteorol Climatol 47: 976–990

    Article  Google Scholar 

  • Viterbo P, Beljaars ACM, Mahouf J-F, Teixeira J (1999) The representation of soil moisture freezing and its impact on the stable boundary layer. Q J R Meteorol Soc 125: 2401–2426

    Article  Google Scholar 

  • Voogt JA, Grimmond CSB (2000) Modelling surface sensible heat flux using surface radiative temperatures in a simple urban area. J Appl Meteorol 39: 1679–1699

    Article  Google Scholar 

  • Yang K, Tamai N, Koike T (2001) Analytical solution of surface layer similarity equations. J Appl Meteorol 40: 1647–1653

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hendrik Wouters.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wouters, H., De Ridder, K. & van Lipzig, N.P.M. Comprehensive Parametrization of Surface-Layer Transfer Coefficients for Use in Atmospheric Numerical Models. Boundary-Layer Meteorol 145, 539–550 (2012). https://doi.org/10.1007/s10546-012-9744-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-012-9744-3

Keywords

Navigation