Skip to main content
Log in

A Large-Eddy Simulation Study of Water Vapour and Carbon Dioxide Isotopes in the Atmospheric Boundary Layer

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

A large-eddy simulation model developed at the National Center for Atmospheric Research (NCAR) is extended to simulate the transport and diffusion of C18OO, H 182 O and 13CO2 in the atmospheric boundary layer (ABL). The simulation results show that the 18O compositions of leaf water and the ABL CO2 are moderately sensitive to wind speed. The variations in the 18O composition of water vapour are an order of magnitude greater than those in the 13C and 18O compositions of CO2 both at turbulent eddy scales and across the capping inversion. In a fully-developed convective ABL, these isotopic compositions are well mixed as with other conserved atmospheric quantities. The Keeling intercepts determined with the simulated high-frequency turbulence time series do not give a reliable estimate of the 18O composition of the surface water vapour flux and may be a reasonable approximation to the 13C and 18O compositions of the surface CO2 flux in the late afternoon only after a deep convective ABL has developed. We suggest that our isotopic large-eddy simulation (ISOLES) model should be a useful tool for testing and formulating research hypotheses on land–air isotopic exchanges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baldocchi DD, Bowling DR (2003) Modeling the discrimination of 13CO2 above and within a temperate broad-leaved forest canopy on hourly to seasonal time scales. Plant Cell Environ 26: 231–244

    Article  Google Scholar 

  • Barbour MM, Fischer RA, Sayre KD, Farquhar GD (2000) Oxygen isotope ratio of leaf and grain material correlates with stomatal conductance and grain yield in irrigated wheat. Aust J Plant Physiol 27: 625–637

    Google Scholar 

  • Barr A, Betts A (1997) Radiosonde boundary layer budgets above a boreal forest. J Geophys Res 102: 29205–29212

    Article  Google Scholar 

  • Battle M, Bender ML, Tans PP, White JWC, Ellis JT, Convay T, Francey RJ (2000) Global carbon sinks and their variability inferred from atmospheric O2 and 13C. Science 287: 2467–2470

    Article  Google Scholar 

  • Bender M, Sowers T, Labeyrie L (1994) The Dole effect and its variations during the last 130000 years as measured in the Vostok ice core. Glob Biogeochem Cycles 8: 363–367

    Article  Google Scholar 

  • Betts AK, Helliker B, Berry J (2004) Coupling between CO2, water vapour, temperature, and radon and their fluxes in an idealized equilibrium boundary layer over land. J Geophys Res 109: D18103. doi:10.1029/2003JD004420

    Article  Google Scholar 

  • Black TA, den Hartog G, Neumann HH, Blanken PD, Yang PC, Russell C, Nesic Z, Lee X, Chen SG, Staebler R, Novak MD (1996) Annual cycles of water vapor and carbon dioxide fluxes in and above a boreal aspen forest. Glob Chang Biol 2: 219–229

    Article  Google Scholar 

  • Bowling DR, Baldocchi DD, Monson RK (1999) Dynamics of isotopic exchange of carbon dioxide in a Tennessee deciduous forest. Glob Biogeochem Cycles 13: 903–922

    Article  Google Scholar 

  • Bowling DR, Tans PP, Monson RK (2001) Partitioning net ecosystem carbon exchange with isotopic fluxes of CO2. Glob Chang Biol 7: 127–145

    Article  Google Scholar 

  • Bowling DR, Burns SP, Conway TJ et al (2005) Extensive observations of CO2 carbon isotope content in and above a high-elevation subalpine forest. Glob Biogeochem Cycles 19: GB3023

    Article  Google Scholar 

  • Bush SE, Pataki DE, Ehleringer JR (2007) Sources of variation in δ 13C of fossil fuel emissions in Salt Lake City, USA. Appl Geochem 22: 715–723

    Article  Google Scholar 

  • Chen B, Chen JM, Tans PP, Huang L (2006) Simulating dynamics of 13C of CO2 in the planetary boundary layer over a boreal forest region: covariation between surface fluxes and atmospheric mixing. Tellus 58B: 537–549

    Google Scholar 

  • Ciais P, Tans PP, Trolier M et al (1995) A large northern hemisphere terrestrial CO2 sink indicated by 13C/12C ratio of atmospheric CO2. Science 269: 1098–1102

    Article  Google Scholar 

  • Ciais P, Denning AS, Tans PP, Berry JA, Randall DA, Collatz GJ, Sellers PJ, White JWC, Trolier M, Meijer HAJ, Francey RJ, Monfray MH (1997) A three-dimensional synthesis study of δ 18O in atmospheric CO2: 1. Surface fluxes. J Geophys Res 102: 5857–5872

    Article  Google Scholar 

  • Craig H, Gordon LI (1965) Deuterium and oxygen-18 variations in the ocean and the marine atmosphere. In: Tongiorgi E (ed) Stable isotopes in oceanographic studies and paleotemperatures. Lab di Geol Necl, Pisa, pp 9130

  • Cuntz M, Ciais P, Hoffmann G (2002) Modeling the continental effect of oxygen isotopes over Eurasia. Tellus B 54: 895–909

    Article  Google Scholar 

  • Cuntz M, Ciais P, Hoffmann G, Knorr W (2003) A comprehensive global three-dimensional model of 18O in atmospheric CO2: 1 validation of surface processes. J Geophys Res 108: 4527

    Article  Google Scholar 

  • Farquhar GD, Cernusak LA (2005) On the isotopic composition of leaf water in the non-steady state. Funct Plant Biol 32: 293–303

    Article  Google Scholar 

  • Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 40: 503–537

    Article  Google Scholar 

  • Farquhar GD, Lloyd J, Taylor JA, Flanagan LB, Syvertsen JP, Hubick KT, Wong SC, Ehleringer JR (1993) Vegetation effects on the isotope composition of oxygen in atmospheric CO2. Nature 363: 439–443

    Article  Google Scholar 

  • Fung I, Field CB, Berry JA, Thompson MV et al (1997) Carbon-13 exchanges between the atmosphere and biosphere. Glob Biogeochem Cycles 11: 507–533

    Article  Google Scholar 

  • Gillon J, Yakir D (2001) Anhydrase activity in terrestrial vegetation on the 18O content of atmospheric CO2. Science 291: 2584–2587

    Article  Google Scholar 

  • Górska M, de Arellano JV, Lemone MA, Heerwaarden CCV (2008) Mean and flux horizontal variability of virtual potential temperature, moisture, and carbon dioxide: aircraft observations and LES study. Mon Weather Rev 136: 4435–4451

    Article  Google Scholar 

  • Griffis TJ, Zhang J, Baker JM, Kljun N, Billmark K (2007) Determining carbon isotope signatures from micrometeorological measurements: implications for studying biosphere–atmosphere exchange processes. Boundary-Layer Meteorol 123: 295–316

    Article  Google Scholar 

  • Griffis TJ, Sargent SD, Baker JM, Lee X, Tanner BD, Greene J, Swiatek E, Billmark K (2008) Direct measurement of biosphere–atmosphere isotopic CO2 exchange using the eddy covariance technique. J Geophys Res 113: D08304. doi:10.1029/2007JD009297

    Article  Google Scholar 

  • Griffis TJ, Sargent SD, Lee X, Baker JM, Greene J, Erickson M, Zhang X, Billmark K, Schultz N, Xiao W, Hu N (2010) Determining the oxygen isotope composition of evapotranspiration using eddy covariance. Boundary-Layer Meteorol 137: 307–326

    Article  Google Scholar 

  • Griffis TJ, Lee X, Baker JM, Billmark K, Schultz N, Erickson M, Zhang X, Fassbinder J, Xiao W, Hu N (2011) Oxygen isotope composition of evapotranspiration and its relation to C4 photosynthetic discrimination. J Geophys Res Biogeosci 116: G01035. doi:10.1029/2010JG001514

    Article  Google Scholar 

  • He H, Smith RB (1999) Stable isotope composition of water vapor in the atmospheric boundary layer above the forests of New England. J Geophys Res 104: 11657–11673

    Article  Google Scholar 

  • Helliker BR, Roden JS, Cook C, Ehleringer JR (2002) A rapid and precise method for sampling and determining the oxygen isotope ratio of atmospheric water vapor. Rapid Commun Mass Spectrom 16: 929–932

    Article  Google Scholar 

  • Helliker BR, Berry JA, Betts AK, Bakwin PS, Davis KJ, Denning AS, Ehleringer JR, Miller JB, Butler MP, Ricciuto DM (2004) Estimates of net CO2 flux by application of equilibrium boundary layer concepts to CO2 and water vapor measurements from a tall tower. J Geophys Res 109: D20106. doi:10.1029/2004JD004532

    Article  Google Scholar 

  • Huang J, Lee X, Patton EG (2008) A modeling study of flux imbalance and the influence of entrainment in the convective boundary layer. Boundary-Layer Meteorol 27: 273–292

    Article  Google Scholar 

  • Huang J, Lee X, Patton E (2009) Dissimilarity of scalar transport in the convective boundary layer in inhomogeneous landscapes. Boundary-Layer Meteorol 130: 327–345

    Article  Google Scholar 

  • Huang J, Lee X, Patton EG (2011) Entrainment and budget of heat, water vapor and carbon dioxide in a convective boundary layer driven by time-varying solar radiation. J Geophy Res Atmos 116: D06308. doi:10.1029/2010/JD014938

    Article  Google Scholar 

  • Idso SB (1981) A set of equations for full spectrum and 8- to 14-μm and 10.5- to 12.5-μm thermal radiation from cloudless skies. Water Resour Res 17: 295–304. doi:10.1029/WR017i002p00295

    Article  Google Scholar 

  • Kanda M, Inagaki A, Letzel MO, Raasch S, Watanabe T (2004) LES study of the energy imbalance problem with eddy covariance fluxes. Boundary-Layer Meteorol 110: 381–404

    Article  Google Scholar 

  • Kang SL, Davis KJ (2008) Effects of mesoscale surface heterogeneity on the fair-weather convective atmospheric boundary layer. J Atmos Sci 65: 3197–3213

    Article  Google Scholar 

  • Katul GG, Sempreviva AM, Cava D (2008) The temperature–humidity covariance in the marine surface layer: a one-dimensional analytical model. Boundary-Layer Meteorol 126: 263–278

    Article  Google Scholar 

  • Lai CT, Ehleringer JR, Bond BJ, KT Paw U (2005) Contributions of evaporation, isotopic non-steady state transpiration, and atmospheric mixing on the δ 18O of water vapor in Pacific Northwest coniferous forests. Plant Cell Environ 29: 77–94

    Article  Google Scholar 

  • Lai C, Schauer A, Owensby C, Ham J, Helliker B, Tans P, Ehleringer J (2006) Regional CO2 fluxes inferred from mixing ratio measurements: estimates from flask air samples in central Kansas, USA. Tellus 58B: 523–536

    Google Scholar 

  • Lee X, Massman W (2011) A perspective on thirty years of the Webb, Pearman and Leuning density corrections. Boundary-Layer Meteorol 139: 37–59

    Article  Google Scholar 

  • Lee X, Smith R, Williams J (2006) Water vapor 18O/16O isotope ratio in surface air in New England, USA. Tellus 58B: 293–304

    Google Scholar 

  • Lee X, Kim K, Smith RB (2007) Temporal variations of the 18O/16O signal of the whole-canopy transpiration in a temperate forest. Glob Biogeochem Cycles 21: GB3013. doi:10.1029/2006GB002871

    Article  Google Scholar 

  • Lee X, Griffis TJ, Baker JM, Billmark KA, Kim K, Welp LR (2009) Canopy-scale kinetic fractionation of atmospheric carbon dioxide and water vapor isotopes. Glob Biogeochem Cycles 23: GB1002. doi:10.1029/2008GB003331

    Article  Google Scholar 

  • Lloyd J, Francey R, Mollicone D, Raupach M, Sogachev A, Arneth A, Byers J, Kelliher F, Rebmann C, Valentini R, Wong S, Bauer G, Schulze E (2001) Vertical profiles, boundary layer budgets, and regional flux estimates for CO2 and its 13C/12C ratio and for water vapor above a forest/bog mosaic in central Siberia. Glob Biogeochem Cycles 15: 267–284

    Article  Google Scholar 

  • Moeng C (1984) A large-eddy-simulation model for the study of planetary boundary-layer turbulence. J Atmos Sci 41: 2052–2062

    Article  Google Scholar 

  • Moeng CH, Wyngaard JC (1984) Statistics of conservative scalars in the convective boundary layer. J Atmos Sci 41: 3161–3169

    Article  Google Scholar 

  • Ogée J, Peylin P, Ciais P, Bariac T, Brunet Y, Berbigier P, Roche C, Richard P, Bardoux G, Bonnefond JM (2003) Partitioning net ecosystem carbon exchange into net assimilation and respiration using 13CO2 measurements: a cost-effective sampling strategy. Glob Biogeochem Cycles 17: 1070. doi:10.1029/2002GB001995

    Article  Google Scholar 

  • Ogée J, Peylin P, Cuntz M, Bariac T, Brunet Y, Berbigier P, Richard P, Ciais P (2004) Partitioning net ecosystem carbon exchange into net assimilation and respiration with canopy-scale isotopic measurements: an error propagation analysis with 13CO2 and C18OO data. Glob Biogeochem Cycles 18: GB2019

    Article  Google Scholar 

  • Pataki DE, Bowling DR, Ehleringer JR, Zobitz JM (2006) High resolution atmospheric monitoring of urban carbon dioxide sources. Geophys Res Lett 33: L03813

    Article  Google Scholar 

  • Patton EG, Sullivan PP, Davis KJ (2003) The influence of a forest canopy on top-down and bottom-up diffusion in the planetary boundary layer. Q J Roy Meteorol Soc 129: 1415–1434

    Article  Google Scholar 

  • Patton EG, Sullivan PP, Moeng CH (2005) The influence of idealized heteorogeneity on wet and dry planetary boundary layers coupled to the land surface. J Atmos Sci 62: 2078–2097

    Article  Google Scholar 

  • Riley WJ, Still CJ, Torn MS, Berry JA (2002) A mechanistic model of H 182 O and C18OO fluxes between ecosystems and the atmosphere: Model description and sensitivity analyses. Glob Biogeochem Cycles 16: 1095–1109. doi:10.1029/2002GB001878

    Article  Google Scholar 

  • Ronda R, De Bruin H, Holtslag A (2001) Representation of the canopy conductance in modeling the surface energy budget for low vegetation. J Appl Meteorol 40: 1431–1444

    Article  Google Scholar 

  • Roth M, Oke TR (1995) Relative efficiencies of turbulent transfer of heat, mass and momentum over a patchy urban surface. J Atmos Sci 52: 1863–1874

    Article  Google Scholar 

  • Scanlon TM, Kustas WP (2010) Partitioning carbon dioxide and water vapor fluxes using correlation analysis. Agric For Meteorol 150: 89–99

    Article  Google Scholar 

  • Steinfeld G, Letzel MO, Raasch S, Kanda M, Inagaki A (2007) Spatial representativeness of single tower measurements and the imbalance problem with eddy-covariance fluxes: results of a large-eddy simulation study. Boundary-Layer Meteorol 123: 77–98

    Article  Google Scholar 

  • Still CJ et al (2009) Influence of clouds and diffuse radiation on ecosystem-atmosphere CO2 and C18OO exchanges. J Geophys Res 114: G01018. doi:10.1029/2007JG000675

    Article  Google Scholar 

  • Sullivan P, Moeng C, Stevens B, Lenschow D, Mayor S (1998) Structure of the entrainment zone capping the convective atmospheric boundary layer. J Atmos Sci 55: 3042–3064

    Article  Google Scholar 

  • Tans PP (1980) On calculating the transfer of 13C in reservoir models of the carbon cycle. Tellus 32: 464–469

    Article  Google Scholar 

  • Welp LR, Lee X, Kim K, Griffis TJ, Billmark K, Baker JM (2008) δ 18O of water vapor, evapotranspiration and the sites of leaf water evaporation in a soybean canopy. Plant Cell Environ 31: 1214–1228

    Article  Google Scholar 

  • Wen XF, Zhang SC, Sun XM, Yu GR, Lee X (2010) Water vapor and precipitation isotope ratios in Beijing, China. J Geophys Res Atmos 115: D01103. doi:10.1029/2009JD012408

    Article  Google Scholar 

  • Williams DG, Cable W, Hultine K et al (2004) Evapotranspiration components determined by stable isotope, sap flow and eddy covariance techniques. Agric For Meteorol 125: 241–258

    Article  Google Scholar 

  • Wilson KB, Hanson PJ, Mulholland PJ, Baldocchi DD, Wullschleger SD (2001) A comparison of methods for determining forest evapotranspiration and its components: sap-flow, soil water budget, eddy covariance and catchment water balance. Agric For Meteorol 106: 153–168

    Article  Google Scholar 

  • Xiao W, Lee X, Griffis T, Kim K, Welp L, Yu Q (2010) A modeling investigation of canopy–air oxygen isotopic exchange of water vapor and carbon dioxide in a soybean field. J Geophys Res Biogeosci 115: G01004. doi:10.1029/2009JG001,163

    Article  Google Scholar 

  • Yakir D, Sternberg LSL (2000) The use of stable isotopes to study ecosystem gas exchange. Oecologia 123: 297–311

    Article  Google Scholar 

  • Zobitz JM, Burns SP, Reichstein M, Bowling DR (2008) Partitioning net ecosystem carbon exchange and the carbon isotopic disequilibrium in a subalpine forest. Glob Chang Biol 14: 1785–1800

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuhui Lee.

Electronic Supplementary Material

The Below is the Electronic Supplementary Material.

ESM 1 (DOC 1,943 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, X., Huang, J. & Patton, E.G. A Large-Eddy Simulation Study of Water Vapour and Carbon Dioxide Isotopes in the Atmospheric Boundary Layer. Boundary-Layer Meteorol 145, 229–248 (2012). https://doi.org/10.1007/s10546-011-9631-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-011-9631-3

Keywords

Navigation