Skip to main content

Advertisement

Log in

A Note on Two-Equation Closure Modelling of Canopy Flow

  • Note
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The note presents a rational approach to modelling the source/sink due to vegetation or buoyancy effects that appear in the turbulent kinetic energy, E, equation and a supplementary equation for a length-scale determining variable, φ, when two-equation closure is applied to canopy and atmospheric boundary-layer flows. The approach implements only standard model coefficients C φ1 and C φ2 in the production and destruction terms of the φ equation, respectively. Numerical tests illustrate the practical applicability of the method, where, for example, simulations with the Eω model (where \({\varphi=\omega=\varepsilon/E}\) is the specific dissipation and \({\varepsilon}\) is the dissipation rate of E) properly reproduce both the surface-layer wind profile estimated from the Monin-Obukhov similarity theory and the mixing-height evolution observed above forested terrain in Southern Finland.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Apsley DD, Castro IP (1997) A limited-length-scale k–\({\varepsilon}\) model for the neutral and stably-stratified atmospheric boundary layer. Boundary-Layer Meteorol 83: 75–98. doi:10.1023/A:1000252210512

    Article  Google Scholar 

  • Ayotte KW, Finnigan JJ, Raupach MR (1999) A second-order closure for neutrally stratified vegetative canopy flows. Boundary-Layer Meteorol 90: 189–216. doi:10.1023/A:1001722609229

    Article  Google Scholar 

  • Baumert H, Peters H (2000) Second-moment closures and length scales for weakly stratified turbulent shear flows. J Geophys Res 105: 6453–6468. doi:10.1029/1999JC900329

    Article  Google Scholar 

  • Blackadar AK (1962) The vertical distribution of wind and turbulent exchange in a neutral atmosphere. J Geophys Res 67: 3095–3102. doi:10.1029/JZ067i008p03095

    Article  Google Scholar 

  • Brunet Y, Finnigan JJ, Raupach MR (1994) A wind tunnel study of air flow in waving wheat: single-point velocity statistics. Boundary-Layer Meteorol 70: 95–132. doi:10.1007/BF00712525

    Article  Google Scholar 

  • Businger J, Wyngaard JC, Izumi Y, Bradley EF (1971) Flux–profile relationships in the atmospheric surface layer. J Atmos Sci 28: 181–189. doi:10.1175/1520-0469(1971)028<0181:FPRITA>2.0.CO;2

    Article  Google Scholar 

  • Castro FA, Palma JMLM, Silva Lopes A (2003) Simulation of the Askervein flow: Part 1: Reynolds averaged Navier-Stokes equations (k–\({\varepsilon}\) turbulence model). Boundary-Layer Meteorol 107: 501–530. doi:10.1023/A:1022818327584

    Article  Google Scholar 

  • Deardorff JW (1972) Numerical investigations of neutral and unstable planetary boundary layers. J Atmos Sci 18: 495–527

    Google Scholar 

  • Duynkerke PG (1988) Application of the \({E-\varepsilon}\) turbulence closure model to the neutral and stable atmospheric boundary layer. J Atmos Sci 45: 865–880. doi:10.1175/1520-0469(1988)045<0865:AOTTCM>2.0.CO;2

    Article  Google Scholar 

  • Finnigan JJ (2000) Turbulence in plant canopies. Annu Rev Fluid Mech 32: 519–571. doi:10.1146/annurev.fluid.32.1.519

    Article  Google Scholar 

  • Finnigan JJ (2007) Turbulent flow in canopies on complex topography and the effects of stable stratification. In: Gayev YA, Hunt JCR (eds) Flow and transport processes with complex obstructions. Springer, Dordrecht, pp 199–219

    Chapter  Google Scholar 

  • Finnigan JJ, Shaw RH (2008) Double-averaging methodoly and its application to turbulent flow in and above vegetation canopies. Acta Geophys 56: 534–561. doi:10.2478/s11600-008-0034-x

    Article  Google Scholar 

  • Hanjalić K (2005) Will RANS survive LES? A view of perspectives. ASME J Fluid Eng 27: 831–839. doi:10.1115/1.2037084

    Article  Google Scholar 

  • Hanjalić K, Kenjereš S (2008) Some developments in turbulence modeling for wind and environmental engineering. J Wind Eng Ind Aerodyn 96: 1537–1570. doi:10.1016/j.jweia.2008.02.054

    Article  Google Scholar 

  • Hari P, Kulmala M (2005) Station for measuring ecosystem–atmosphere relations (SMEAR II). Boreal Environ Res 10: 315–322

    Google Scholar 

  • Hipsey MR, Sivapalan M, Clement TP (2004) A numerical and field investigation of surface heat fluxes from small wind-sheltered waterbodies in semi-arid Western. Environ Fluid Mech 4: 79–106. doi:10.1023/A:1025547707198

    Article  Google Scholar 

  • Kantha LH (2004) The length scale equation in turbulence models. Nonlinear Process Geophys 11: 83–97.15

    Google Scholar 

  • Kantha LH, Bao J-W, Carniel S (2005) A note on Tennekes hypothesis and its impact on second moment closure models. Ocean Model 9: 23–29

    Google Scholar 

  • Katul GG, Mahrt L, Poggi D, Sanz C (2004) One- and two-equation models for canopy turbulence. Boundary- Layer Meteorol 113: 81–109. doi:10.1023/B:BOUN.0000037333.48760.e5

    Article  Google Scholar 

  • Laakso L, Grönholm T, Kulmala L, Haapanala S, Hirsikko A, Lovejoy ER, Kazil J, Kurtén T, Boy M, Nilsson ED, Sogachev A, Riipinen I, Stratmann F, Kulmala M (2007) Hot-air balloon measurements of vertical variation of boundary layer new particle formation. Boreal Environ Res 12: 279–294

    Google Scholar 

  • Launder BE, Spalding DB (1974) The numerical computation of turbulent flows. Comput Mech Appl Mech Eng 3: 269–289

    Article  Google Scholar 

  • Launder BE, Reece GJ, Rodi W (1975) Progress in the development of a Reynolds-stress turbulent closure. J Fluid Mech 68: 537–566. doi:10.1017/S0022112075001814

    Article  Google Scholar 

  • Moeng C-H (1984) A Large-eddy simulation model for the study of planetary boundary-layer turbulence. J Atmos Sci 41: 2052–2062. doi:10.1175/1520-0469(1984)041<2052:ALESMF>2.0.CO;2

    Article  Google Scholar 

  • Paulson CA (1970) The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J Appl Meteorol 9: 857–860. doi:10.1175/1520-0450(1970)009<0857:TMROWS>2.0.CO;2

    Article  Google Scholar 

  • Pielke R (2002) Mesoscale meteorological modeling. Academic Press, San Diego, 676pp

    Google Scholar 

  • Pope SB (2000) Turbulent flows. Cambridge University Press, UK, 771pp

    Google Scholar 

  • Rao KS, Wyngaard JC, Coté OR (1974) Local advection of momentum, heat, and moisture in micrometeorology. Boundary-Layer Meteorol 7: 331–348. doi:10.1007/BF00240836

    Article  Google Scholar 

  • Raupach MR, Shaw RH (1982) Averaging procedures for flow within vegetation canopies. Boundary-Layer Meteorol 22: 79–90. doi:10.1007/BF00128057

    Article  Google Scholar 

  • Seginer I, Mulhearn PJ, Bradley EF, Finnigan JJ (1976) Turbulent flow in a model plant canopy. Boundary-Layer Meteorol 10: 423–453. doi:10.1007/BF00225863

    Article  Google Scholar 

  • Sogachev A, Panferov O (2006) Modification of two-equation models to account for plant drag. Boundary-Layer Meteorol 121: 229–266. doi:10.1007/s10546-006-9073-5

    Article  Google Scholar 

  • Sogachev A, Menzhulin G, Heimann M, Lloyd J (2002) A simple three dimensional canopy—planetary boundary layer simulation model for scalar concentrations and fluxes. Tellus 54: 784–819

    Article  Google Scholar 

  • Svensson U, Häggkvist K (1990) A two-equation turbulence model for canopy flows. J Wind Eng Ind Aerodyn 35: 201–211

    Article  Google Scholar 

  • Umlauf L, Burchard H (2003) A generic length-scale equation for geophysical turbulence models. J Mar Res 61: 235–265. doi:10.1357/002224003322005087

    Article  Google Scholar 

  • Wang H, Takle ES (1995) A numerical simulation of boundary-layer flows near shelterbelts. Boundary-Layer Meteorol 75: 141–173. doi:10.1007/BF00721047

    Article  Google Scholar 

  • Wilcox DC (1988) Reassessment of the scale determining equation for advance turbulence models. AIAA J 26: 1299–1310. doi:10.2514/3.10041

    Article  Google Scholar 

  • Wilcox DC (2002) Turbulence modeling for CFD. DCW Industries Inc., La Cañada, 540pp

    Google Scholar 

  • Wilson JD, Finnigan JJ, Raupach MR (1998) A first-order closure for disturbed plant-canopy flows, and its application to winds in a canopy on a ridge. Q J R Meteorol Soc 124: 705–732

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey Sogachev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sogachev, A. A Note on Two-Equation Closure Modelling of Canopy Flow. Boundary-Layer Meteorol 130, 423–435 (2009). https://doi.org/10.1007/s10546-008-9346-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-008-9346-2

Keywords

Navigation