Skip to main content
Log in

Risk factors for poor bone health in primary mitochondrial disease

  • Original Article
  • Published:
Journal of Inherited Metabolic Disease

Abstract

Introduction

Primary mitochondrial disease is caused by either mitochondrial or nuclear DNA mutations that impact the function of the mitochondrial respiratory chain. Individuals with mitochondrial disorders have comorbid conditions that may increase their risk for poor bone health. The objective of this retrospective electronic medical record (EMR) review was to examine risk factors for poor bone health in children and adults with primary mitochondrial disease.

Methods

Eighty individuals with confirmed clinical and genetic diagnoses of primary mitochondrial disease at the Children’s Hospital of Philadelphia (CHOP) were included in this study. Risk factors and bone health outcomes were collected systematically, including: anthropometrics (low BMI), risk-conferring co-morbidities and medications, vitamin D status, nutrition, immobility, fracture history, and, where available, dual energy x-ray absorptiometry (DXA) bone mineral density (BMD) results.

Results

Of patients 73% (n = 58) had at least one risk factor and 30% (n = 24) had four or more risk factors for poor bone health. The median number of risk factors per participant was 2, with an interquartile interval (IQI 0–4). In the subset of the cohort who were known to have sustained any lifetime fracture (n = 11), a total of 16 fractures were reported, six of which were fragility fractures, indicative of a clinically significant decrease in bone strength.

Conclusions

The prevalence of risk factors for poor bone health in primary mitochondrial disease is high. As part of supportive care, practitioners should address modifiable risk factors to optimize bone health, and have a low threshold to evaluate clinical symptoms that could suggest occult fragility fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alexandru D, So W (2012) Evaluation and management of vertebral compression fractures. Perm J 16(4):46–51

    Article  PubMed  PubMed Central  Google Scholar 

  • Barry DW, Kohrt WM (2008) Exercise and the preservation of bone health. J Cardiopulm Rehabil Prev 28(3):153–162

    Article  PubMed  Google Scholar 

  • Bishop N et al (2014) Fracture prediction and the definition of osteoporosis in children and adolescents: the ISCD 2013 pediatric official positions. J Clin Densitom 17(2):275–280

    Article  PubMed  Google Scholar 

  • Chinnery PF (1993) Mitochondrial disorders overview. In: Pagon RA et al (ed) GeneReviews(R). University of Washington, Seattle

  • Cholley F et al (2001) Mitochondrial respiratory chain deficiency revealed by hypothermia. Neuropediatrics 32(2):104–106

    Article  CAS  PubMed  Google Scholar 

  • De Block CE et al (2004) A novel 7301-bp deletion in mitochondrial DNA in a patient with Kearns-Sayre syndrome, diabetes mellitus, and primary amenorrhoea. Exp Clin Endocrinol Diabetes 112(2):80–83

    Article  CAS  PubMed  Google Scholar 

  • Dobson PF et al (2016) Unique quadruple immunofluorescence assay demonstrates mitochondrial respiratory chain dysfunction in osteoblasts of aged and PolgA(−/−) mice. Sci Rep 6:31907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dosa NP et al (2007) Incidence, prevalence, and characteristics of fractures in children, adolescents, and adults with spina bifida. J Spinal Cord Med 30(Suppl 1):S5–S9

    Article  PubMed  PubMed Central  Google Scholar 

  • Drezner MK (2004) Treatment of anticonvulsant drug-induced bone disease. Epilepsy Behav 5(Suppl 2):S41–S47

    Article  PubMed  Google Scholar 

  • Eigentler A et al (2014) Low bone mineral density in Friedreich ataxia. Cerebellum 13(5):549–557

    Article  PubMed  Google Scholar 

  • Fedorenko M, Wagner ML, Wu BY (2015) Survey of risk factors for osteoporosis and osteoprotective behaviors among patients with epilepsy. Epilepsy Behav 45:217–222

    Article  PubMed  Google Scholar 

  • Gordon CM et al (2014) 2013 pediatric position development conference: executive summary and reflections. J Clin Densitom 17(2):219–224

    Article  PubMed  Google Scholar 

  • Grieff M, Bushinsky DA (2011) Diuretics and disorders of calcium homeostasis. Semin Nephrol 31(6):535–541

    Article  CAS  PubMed  Google Scholar 

  • Harvey JN, Barnett D (1992) Endocrine dysfunction in Kearns-Sayre syndrome. Clin Endocrinol 37(1):97–103

    Article  CAS  Google Scholar 

  • Holick MF et al (2011) Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 96(7):1911–1930

    Article  CAS  PubMed  Google Scholar 

  • Kalkwarf HJ et al (2007) The bone mineral density in childhood study: bone mineral content and density according to age, sex, and race. J Clin Endocrinol Metab 92(6):2087–2099

    Article  CAS  PubMed  Google Scholar 

  • Kanis JA et al (1994) The diagnosis of osteoporosis. J Bone Miner Res 9(8):1137–1141

    Article  CAS  PubMed  Google Scholar 

  • Khan TS, Fraser LA (2015) Type 1 diabetes and osteoporosis: from molecular pathways to bone phenotype. J Osteoporos 2015:174186

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuczmarski RJ et al (2000) CDC growth charts: United States. Adv Data 314:1–27

    Google Scholar 

  • Kuczmarski RJ, Ogden CL, Guo SS, Grummer-Strawn LM, Flegal KM, Mei Z, Wei R, Curtin LR, Roche AF, Johnson CL (2002) 2000 CDC Growth Charts for the United States: methods and development. Vital and Health Statistics Series 11, Data from the National Health Survey (246):1–190

  • Lewiecki EM et al (2016) Best practices for dual-energy X-ray absorptiometry measurement and reporting: International Society for Clinical Densitometry Guidance. J Clin Densitom 19(2):127–140

    Article  PubMed  Google Scholar 

  • Lindsey RC, Mohan S (2016) Skeletal effects of growth hormone and insulin-like growth factor-I therapy. Mol Cell Endocrinol 432:44–55

    Article  CAS  PubMed  Google Scholar 

  • Mazziotti G et al (2016) Glucocorticoid-induced osteoporosis: pathophysiological role of GH/IGF-I and PTH/VITAMIN D axes, treatment options and guidelines. Endocrine doi:10.1007/s12020-016-1146-8

  • McDonald DG et al (2002) Fracture prevalence in Duchenne muscular dystrophy. Dev Med Child Neurol 44(10):695–698

    Article  PubMed  Google Scholar 

  • Mirza F, Canalis E (2015) Management of endocrine disease: secondary osteoporosis: pathophysiology and management. Eur J Endocrinol 173(3):R131–R151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Misra M et al (2008) Vitamin D deficiency in children and its management: review of current knowledge and recommendations. Pediatrics 122(2):398–417

    Article  PubMed  Google Scholar 

  • Miyazaki T et al (2003) Regulation of cytochrome c oxidase activity by c-Src in osteoclasts. J Cell Biol 160(5):709–718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy JL et al (2008) Resistance training in patients with single, large-scale deletions of mitochondrial DNA. Brain 131(Pt 11):2832–2840

    Article  PubMed  Google Scholar 

  • O’Flynn N (2012) Risk assessment of fragility fracture: NICE guideline. Br J Gen Pract 62(605):667–668

    Article  PubMed  PubMed Central  Google Scholar 

  • Panday K, Gona A, Humphrey MB (2014) Medication-induced osteoporosis: screening and treatment strategies. Ther Adv Musculoskelet Dis 6(5):185–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papiha SS et al (1998) Age related somatic mitochondrial DNA deletions in bone. J Clin Pathol 51(2):117–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parikh S et al (2015) Diagnosis and management of mitochondrial disease: a consensus statement from the mitochondrial Medicine Society. Genet Med 17(9):689–701

    Article  CAS  PubMed  Google Scholar 

  • Pavlovic A et al (2013) Relationship of thoracic kyphosis and lumbar lordosis to bone mineral density in women. Osteoporos Int 24(8):2269–2273

    Article  CAS  PubMed  Google Scholar 

  • Sadat-Ali M et al (2008) Does scoliosis causes low bone mass? A comparative study between siblings. Eur Spine J 17(7):944–947

    Article  PubMed  PubMed Central  Google Scholar 

  • Schaefer AM et al (2013) Endocrine disorders in mitochondrial disease. Mol Cell Endocrinol 379(1–2):2–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shiek Ahmad B et al (2016) Bone mineral changes in epilepsy patients during initial years of antiepileptic drug therapy. J Clin Densitom doi:10.1016/j.jocd.2016.07.008.

  • Sinha A et al (2013) Improving the vitamin D status of vitamin D deficient adults is associated with improved mitochondrial oxidative function in skeletal muscle. J Clin Endocrinol Metab 98(3):E509–E513

    Article  CAS  PubMed  Google Scholar 

  • Stacpoole PW et al (2012) Design and implementation of the first randomized controlled trial of coenzyme CoQ(1)(0) in children with primary mitochondrial diseases. Mitochondrion 12(6):623–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sunyecz JA (2008) The use of calcium and vitamin D in the management of osteoporosis. Ther Clin Risk Manag 4(4):827–836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toth M, Grossman A (2013) Glucocorticoid-induced osteoporosis: lessons from Cushing’s syndrome. Clin Endocrinol 79(1):1–11

    Article  CAS  Google Scholar 

  • Trifunovic A et al (2004) Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429(6990):417–423

    Article  CAS  PubMed  Google Scholar 

  • Tzoufi M et al (2013) A rare case report of simultaneous presentation of myopathy, Addison’s disease, primary hypoparathyroidism, and Fanconi syndrome in a child diagnosed with Kearns-Sayre syndrome. Eur J Pediatr 172(4):557–561

    Article  PubMed  Google Scholar 

  • Varanasi SS et al (1999) Mitochondrial DNA deletion associated oxidative stress and severe male osteoporosis. Osteoporos Int 10(2):143–149

    Article  CAS  PubMed  Google Scholar 

  • Weaver CM et al (2016) The National Osteoporosis Foundation’s position statement on peak bone mass development and lifestyle factors: a systematic review and implementation recommendations. Osteoporos Int 27(4):1281–1386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weber DR et al (2015) Type 1 diabetes is associated with an increased risk of fracture across the life span: a population-based cohort study using the health improvement network (THIN). Diabetes Care 38(10):1913–1920

    Article  PubMed  PubMed Central  Google Scholar 

  • Weger M et al (1999) Incomplete renal tubular acidosis in ‘primary’ osteoporosis. Osteoporos Int 10(4):325–329

    Article  CAS  PubMed  Google Scholar 

  • Wei SH, Lee WT (2015) Comorbidity of childhood epilepsy. J Formos Med Assoc 114(11):1031–1038

    Article  PubMed  Google Scholar 

  • Whittaker RG et al (2007) Prevalence and progression of diabetes in mitochondrial disease. Diabetologia 50(10):2085–2089

    Article  CAS  PubMed  Google Scholar 

  • Zemel BS et al (2010) Height adjustment in assessing dual energy x-ray absorptiometry measurements of bone mass and density in children. J Clin Endocrinol Metab 95(3):1265–1273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zemel BS et al (2011) Revised reference curves for bone mineral content and areal bone mineral density according to age and sex for black and non-black children: results of the bone mineral density in childhood study. J Clin Endocrinol Metab 96(10):3160–3169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shana E. McCormack.

Ethics declarations

Conflict of interest

None.

Details of funding

The funding for this observational study was provided by NIH K23DK102659, (SEM).

Ethical guidelines

This study has been approved by the CHOP IRB, and was conducted in accordance with the principles of the Declaration of Helsinki of 1975 as revised in 2000. All written informed consent was obtained from patients and/or guardians, as appropriate.

Additional information

Communicated by: Daniela Karall

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gandhi, S.S., Muraresku, C., McCormick, E.M. et al. Risk factors for poor bone health in primary mitochondrial disease. J Inherit Metab Dis 40, 673–683 (2017). https://doi.org/10.1007/s10545-017-0046-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-017-0046-2

Keywords

Navigation