Skip to main content
Log in

Inherited disorders of transition metal metabolism: an update

  • SSIEM 2016
  • Published:
Journal of Inherited Metabolic Disease

Abstract

Elements with a biological role include six trace transition metals: manganese, iron, cobalt, copper, zinc and molybdenum. Transition metals participate in group transfer reactions such as glycosylation and phosphorylation and those that can transfer an electron by alternating between two redox states such as iron (3+/2+) and copper (2+/1+) are also very important in biological redox reactions including the reduction of molecular oxygen and the transport of oxygen. However, these trace metals are also potentially toxic, generating reactive oxygen species through Fenton chemistry. Recently, a role of trace metals in host defence (“nutritional immunity”) has been recognized. The host can deprive the pathogen of a trace metal or poison it with a toxic concentration. Disorders leading to low concentrations of a trace metal can often be treated by supplementing that metal; disorders leading to excessively high concentrations can often be treated with chelating agents such as penicillamine and disodium calcium edetate. This update will address: i) the manganese/zinc transporters (because two new treatable disorders were described in 2016 – SLC39A8 deficiency and SLC39A14 deficiency); ii) copper transporter disorders because we need to improve the treatment of patients with neurological symptoms due to Wilson’s disease; and iii) iron homeostasis because recent progress in research into the metabolism of iron and its regulation helps us better understand several inborn errors affecting these pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahting U, Mayr JA, Vanlander AV, Hardy SA, Santra S, Makowski C, Alston CL, Zimmermann FA, Abela L, Plecko B, Rohrbach M, Spranger S, Seneca S, Rolinski B, Hagendorff A, Hempel M, Sperl W, Meitinger T, Smet J, Taylor RW, Van Coster R, Freisinger P, Prokisch H, Haack TB (2015) Clinical, biochemical, and genetic spectrum of seven patients with NFU1 deficiency. Front Genet 6:123

    Article  PubMed  PubMed Central  Google Scholar 

  • Barupala DP, Dzul SP, Riggs-Gelasco PJ, Stemmler TL (2016) Synthesis, delivery and regulation of eukaryotic heme and Fe-S cluster cofactors. Arch Biochem Biophys 592:60–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boycott KM, Beaulieu CL, Kernohan KD, Gebril OH, Mhanni A, Chudley AE, Redl D, Qin W, Hampson S, Küry S, Tetreault M, Puffenberger EG, Scott JN, Bezieau S, Reis A, Uebe S, Schumacher J, Hegele RA, McLeod DR, Gálvez-Peralta M, Majewski J, Ramaekers VT, Care4Rare Canada Consortium, Nebert DW, Innes AM, Parboosingh JS, Abou Jamra R (2015) Autosomal-recessive intellectual disability with cerebellar atrophy syndrome caused by mutation of the manganese and zinc transporter gene SLC39A8. Am J Hum Genet 97(6):886–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canonne-Hergaux F, Gruenheid S, Govoni G, Gros P (1999) The Nramp1 protein and its role in resistance to infection and macrophage function. Proc Assoc Am Physicians 111(4):283–289

    Article  CAS  PubMed  Google Scholar 

  • Chen P, Chakraborty S, Mukhopadhyay S, Lee E, Paoliello MM, Bowman AB, Aschner M (2015) Manganese homeostasis in the nervous system. J Neurochem 134(4):601–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chesi G, Hegde RN, Iacobacci S, Concilli M, Parashuraman S, Festa BP, Polishchuk EV, Di Tullio G, Carissimo A, Montefusco S, Canetti D, Monti M, Amoresano A, Pucci P, van de Sluis B, Lutsenko S, Luini A, Polishchuk RS (2016) Identification of p38 MAPK and JNK as new targets for correction of Wilson disease-causing ATP7B mutants. Hepatology 63(6):1842–1859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chowanadisai W, Lönnerdal B, Kelleher SL (2006) Identification of a mutation in SLC30A2 (ZnT-2) in women with low milk zinc concentration that results in transient neonatal zinc deficiency. J Biol Chem 281(51):39699–39707

    Article  CAS  PubMed  Google Scholar 

  • Członkowska A, Litwin T, Karliński M, Dziezyc K, Chabik G, Czerska M (2014) D-penicillamine versus zinc sulfate as first-line therapy for Wilson’s disease. Eur J Neurol 21(4):599–606

    Article  PubMed  Google Scholar 

  • Dhawan A, Taylor RM, Cheeseman P, De Silva P, Katsiyiannakis L, Mieli-Vergani G (2005) Wilson’s disease in children: 37-year experience and revised King’s score for liver transplantation. Liver Transpl 11(4):441–448

    Article  PubMed  Google Scholar 

  • Garringer HJ, Irimia JM, Li W, Goodwin CB, Richine B, Acton A, Chan RJ, Peacock M, Muhoberac BB, Ghetti B, Vidal R (2016) Effect of systemic iron overload and a chelation therapy in a mouse model of the neurodegenerative disease hereditary ferritinopathy. PLoS One 11(8):e0161341

    Article  PubMed  PubMed Central  Google Scholar 

  • IUPAC, Compendium of Chemical Terminology, 2nd ed. (the “Gold Book”) (2006) Online corrected version: (2006–) “transition element” http://goldbook.iupac.org/T06456.html

  • Kambe T, Tsuji T, Hashimoto A, Itsumura N (2015) The physiological, biochemical, and molecular roles of zinc transporters in zinc homeostasis and metabolism. Physiol Rev 95(3):749–784

    Article  CAS  PubMed  Google Scholar 

  • Küry S, Dréno B, Bézieau S, Giraudet S, Kharfi M, Kamoun R, Moisan JP (2002) Identification of SLC39A4, a gene involved in acrodermatitis enteropathica. Nat Genet 31(3):239–240

    Article  PubMed  Google Scholar 

  • Li X, Yang Y, Zhou F, Zhang Y, Lu H, Jin Q, Gao L (2011) SLC11A1 (NRAMP1) polymorphisms and tuberculosis susceptibility: updated systematic review and meta-analysis. PLoS 6(1):e15831. doi:10.1371/journal.pone.0015831

    Article  CAS  Google Scholar 

  • Lichtmannegger J, Leitzinger C, Wimmer R, Schmitt S, Schulz S, Kabiri Y, Eberhagen C, Rieder T, Janik D, Neff F, Straub BK, Schirmacher P, DiSpirito AA, Bandow N, Baral BS, Flatley A, Kremmer E, Denk G, Reiter FP, Hohenester S, Eckardt-Schupp F, Dencher NA, Adamski J, Sauer V, Niemietz C, Schmidt HH, Merle U, Gotthardt DN, Kroemer G, Weiss KH, Zischka H (2016) Methanobactin reverses acute liver failure in a rat model of Wilson disease. J Clin Invest 126(7):2721–2735

    Article  PubMed  PubMed Central  Google Scholar 

  • Litwin T, Dzieżyc K, Karliński M, Chabik G, Czepiel W, Członkowska A (2015) Early neurological worsening in patients with Wilson’s disease. J Neurol Sci 355(1-2):162–167

    Article  PubMed  Google Scholar 

  • Mackie J, Szabo EK, Urgast DS, Ballou E, Childers DS, MacCallum DM, Feldmann J, Brown AJ (2016) Host-imposed copper poisoning impacts fungal micronutrient acquisition during systemic Candida albicans infections. PLoS One 11(6):e0158683. doi:10.1371/journal.pone.0158683

    Article  PubMed  PubMed Central  Google Scholar 

  • Martinelli D, Dionisi-Vici C (2014) AP1S1 defect causing MEDNIK syndrome: a new adaptinopathy associated with defective copper metabolism. Ann N Y Acad Sci 1314:55–63

    Article  CAS  PubMed  Google Scholar 

  • Martinelli D, Travaglini L, Drouin CA, Ceballos-Picot I, Rizza T, Bertini E, Carrozzo R, Petrini S, de Lonlay P, El Hachem M, Hubert L, Montpetit A, Torre G, Dionisi-Vici C (2013) MEDNIK syndrome: a novel defect of copper metabolism treatable by zinc acetate therapy. Brain 136:872–881

    Article  PubMed  Google Scholar 

  • Miyajima H, Takahashi Y, Kamata T, Shimizu H, Sakai N, Gitlin JD (1997) Use of desferrioxamine in the treatment of aceruloplasminemia. Ann Neurol 41(3):404–407

    Article  CAS  PubMed  Google Scholar 

  • Moalem S, Percy ME, Andrews DF, Kruck TP, Wong S, Dalton AJ, Mehta P, Fedor B, Warren AC (2000) Are hereditary hemochromatosis mutations involved in Alzheimer disease? Am J Med Genet 93(1):58–66

    Article  CAS  PubMed  Google Scholar 

  • Niederau C1, Fischer R, Pürschel A, Stremmel W, Häussinger D, Strohmeyer G. (1996) Long-term survival in patients with hereditary hemochromatosis. Gastroenterology 110(4):1107--19

  • Park JH, Hogrebe M, Grüneberg M, DuChesne I, von der Heiden AL, Reunert J, Schlingmann KP, Boycott KM, Beaulieu CL, Mhanni AA, Innes AM, Hörtnagel K, Biskup S, Gleixner EM, Kurlemann G, Fiedler B, Omran H, Rutsch F, Wada Y, Tsiakas K, Santer R, Nebert DW, Rust S, Marquardt T (2015) SLC39A8 Deficiency: A Disorder of manganese transport and glycosylation. Am J Hum Genet 97(6):894--903

  • Park J H, Hogrebe M, Grueneberg M, Reunert J, Rust S, Marquardt T (2016) SLC39A8 deficiency is a novel treatable disorder of manganese metabolism and glycosylation. J Inherit Metab Dis 39(Issue 1 Supplement S54)

  • Quadri M, Federico A, Zhao T, Breedveld GJ, Battisti C, Delnooz C, Severijnen LA, Di Toro Mammarella L, Mignarri A, Monti L, Sanna A, Lu P, Punzo F, Cossu G, Willemsen R, Rasi F, Oostra BA, van de Warrenburg BP, Bonifati V (2012) Mutations in SLC30A10 cause parkinsonism and dystonia with hypermanganesemia, polycythemia, and chronic liver disease. Am J Hum Genet 90(3):467–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman S, Mayr JA (2016) Disorders of oxidative phosphorylation. In: Saudubray JM et al (eds) Inborn metabolic diseases. Springer, Berlin

  • Ramakrishnan B, Ramasamy V, Qasba PK (2006) Structural snapshots of beta-1,4-galactosyltransferase-I along the kinetic pathway.J. Mol Biol 357(5):1619–1633

    Article  CAS  Google Scholar 

  • Riley LG, Cowley MJ, Gayevskiy V, Roscioli T, Thorburn DR, Prelog K, Bahlo M, Sue CM, Balasubramaniam S, Christodoulou J (2016) A SLC39A8 variant causes manganese deficiency, and glycosylation and mitochondrial disorders. J Inherit Metab Dis. doi:10.1007/s10545-016-0010-6

  • Schlaug G, Hefter H, Engelbrecht V, Kuwert T, Arnold S, Stöcklin G, Seitz RJ (1996) Neurological impairment and recovery in Wislon’s disease: evidence from PET and MRI. J Neurol Sci 136:129–139

    Article  CAS  PubMed  Google Scholar 

  • Sharma V, Karlin KD, Wikström M (2013) Computational study of the activated O(H) state in the catalytic mechanism of cytochrome c oxidase. Proc Natl Acad Sci U S A 110(42):16844–16849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuschl K, Mills PB, Parsons H, Malone M, Fowler D, Bitner-Glindzicz M, Clayton PT (2008) Hepatic cirrhosis, dystonia, polycythaemia and hypermanganesaemia--a new metabolic disorder. J Inherit Metab Dis 31(2):151–163

    Article  CAS  PubMed  Google Scholar 

  • Tuschl K, Clayton PT, Gospe SM Jr, Gulab S, Ibrahim S, Singhi P, Aulakh R, Ribeiro RT, Barsottini OG, Zaki MS, Del Rosario ML, Dyack S, Price V, Rideout A, Gordon K, Wevers RA, Chong WK, Mills PB (2012) Syndrome of hepatic cirrhosis, dystonia, polycythemia, and hypermanganesemia caused by mutations in SLC30A10, a manganese transporter in man. Am J Hum Genet 90(3):457–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuschl K, Meyer E, Valdivia LE, Zhao N, Dadswell C, Abdul-Sada A, Hung CY, Simpson MA, Chong WK, Jacques TS, Woltjer RL, Eaton S, Gregory A, Sanford L, Kara E, Houlden H, Cuno SM, Prokisch H, Valletta L, Tiranti V, Younis R, Maher ER, Spencer J, Straatman-Iwanowska A, Gissen P, Selim LA, Pintos-Morell G, Coroleu-Lletget W, Mohammad SS, Yoganathan S, Dale RC, Thomas M, Rihel J, Bodamer OA, Enns CA, Hayflick SJ, Clayton PT, Mills PB, Kurian MA, Wilson SW (2016) Mutations in SLC39A14 disrupt manganese homeostasis and cause childhood-onset parkinsonism-dystonia. Nat Commun 7:11601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Hasselt PM, Clayton P, Houwen RHJ (2016) Disorders in the transport of copper, iron, magnesium, manganese, selenium and zinc. In: Saudubray JM, Baumgartner MR, Walter J (eds) Inborn metabolic diseases. Diagnosis and treatment, 6th edn. Springer, Berlin

    Google Scholar 

  • Zecca L, Youdim MB, Riederer P, Connor JR, Crichton RR (2004) Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci 5(11):863–873

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I would like to particularly thank the following colleagues for their collaboration on investigation of disorders of manganese homeostasis: Karin Tuschl, Philippa Mills, Steve Wilson, Manju Kurian, Esther Meyer, Kling Chong and the others authors of the Tuschl et al papers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter T. Clayton.

Ethics declarations

All studies in the author’s centre were conducted with ethical approval and signed consent from subjects/parents.

No identifying information about patients is included in the article.

All institutional and national guidelines for the care and use of laboratory animals were followed.

Conflict of interest

Peter Clayton declares he has no conflict of interest with regard to information presented in this review. He does receive consultation fees from Actelion.

Additional information

Communicated by: John H. Walter

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clayton, P.T. Inherited disorders of transition metal metabolism: an update. J Inherit Metab Dis 40, 519–529 (2017). https://doi.org/10.1007/s10545-017-0030-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-017-0030-x

Navigation