Skip to main content
Log in

Disturbed iron metabolism in erythropoietic protoporphyria and association of GDF15 and gender with disease severity

  • Original Article
  • Published:
Journal of Inherited Metabolic Disease

Abstract

Patients with erythropoietic protoporphyria (EPP) have reduced activity of the enzyme ferrochelatase that catalyzes the insertion of iron into protoporphyrin IX (PPIX) to form heme. As the result of ferrochelatase deficiency, PPIX accumulates and causes severe photosensitivity. Among different patients, the concentration of PPIX varies considerably. In addition to photosensitivity, patients frequently exhibit low serum iron and a microcytic hypochromic anemia. The aims of this study were to (1) search for factors related to PPIX concentration in EPP, and (2) characterize anemia in EPP, i.e., whether it is the result of an absolute iron deficiency or the anemia of chronic disease (ACD). Blood samples from 67 EPP patients (51 Italian and 16 Swiss) and 21 healthy volunteers were analyzed. EPP patients had lower ferritin (p = 0.021) and hepcidin (p = 0.031) concentrations and higher zinc–protoporphyrin (p < 0.0001) and soluble-transferrin-receptor (p = 0.0007) concentrations compared with controls. This indicated that anemia in EPP resulted from an absolute iron deficiency. Among EPP patients, PPIX concentrations correlated with both growth differentiation factor (GDF) 15 (p = 0.012) and male gender (p = 0.015). Among a subgroup of patients who were iron replete, hemoglobin levels were normal, which suggested that iron but not ferrochelatase is the limiting factor in heme synthesis of individuals with EPP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allen J, Backstrom KR, Cooper JA, Cooper MC, Detwiler TC, Essex DW, Fritz RP, Means RT, Meier PB, Pearlman SR, Roitman-Johnson B, Seligman A (1998) Measurement of soluble transferrin receptor in serum of healthy adults. Clinical Chemistry 44.1: 35-39

  • Baker H (1971) Erythropoietic protoporphyria provoked by iron therapy. Proc R Soc Med 64:610–611

    CAS  PubMed  PubMed Central  Google Scholar 

  • Balwani M, Bloomer J, Desnick R (2014) Erythropoietic protoporphyria, autosomal recessive. In: Pagon RR, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean JLH, Ledbetter N, Mefford HC, Smith RJH, Stephens K (eds) GeneReviews. University of Washington, Seattle

    Google Scholar 

  • Barman-Aksozen J, Beguin C, Dogar AM, Schneider-Yin X, Minder EI (2013) Iron availability modulates aberrant splicing of ferrochelatase through the iron- and 2-oxoglutarate dependent dioxygenase Jmjd6 and U2AF(65.). Blood Cells Mol Dis 51:151–161

    Article  CAS  PubMed  Google Scholar 

  • Barman-Aksozen J, Minder EI, Schubiger C, Biolcati G, Schneider-Yin X (2015) In ferrochelatase-deficient protoporphyria patients, ALAS2 expression is enhanced and erythrocytic protoporphyrin concentration correlates with iron availability. Blood Cells Mol Dis 54:71–77

    Article  CAS  PubMed  Google Scholar 

  • Bossi K, Lee J, Schmeltzer P, Holburton E, Groseclose G, Besur S, Hwang S, Bonkovsky HL (2015) Homeostasis of iron and hepcidin in erythropoietic protoporphyria. Eur J Clin Investig 45:1032–1041

    Article  CAS  Google Scholar 

  • Campostrini N, Castagna A, Zaninotto F, Bedogna V, Tessitore N, Poli A, Martinelli N, Lupo A, Olivieri O, Girelli D (2010) Evaluation of hepcidin isoforms in hemodialysis patients by a proteomic approach based on SELDI-TOF MS. J Biomed Biotechnol 2010:329646

    Article  PubMed  PubMed Central  Google Scholar 

  • Cook JD, Finch CA (1979) Assessing iron status of a population. Am J Clin Nutr 32:2115–2119

    CAS  PubMed  Google Scholar 

  • Delaby C, Lyoumi S, Ducamp S, Martin-Schmitt C, Gouya L, Deybach JC, Beaumont C, Puy H (2009) Excessive erythrocyte PPIX influences the hematologic status and iron metabolism in patients with dominant erythropoietic protoporphyria. Cell Mol Biol (Noisy-le-grand) 55:45–52

    CAS  Google Scholar 

  • Eyster E, Mayer K, McKenzie S (1968) Traumatic hemolysis with iron deficiency anemia in patients with aortic valve lesions. Ann Intern Med 68:995–1004

    Article  CAS  PubMed  Google Scholar 

  • Fleming RE, Sly WS (2001) Hepcidin: a putative iron-regulatory hormone relevant to hereditary hemochromatosis and the anemia of chronic disease. Proc Natl Acad Sci U S A 98:8160–8162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ganz T (2013) Systemic iron homeostasis. Physiol Rev 93:1721–1741

    Article  CAS  PubMed  Google Scholar 

  • Goodnough LT (2012) Iron deficiency syndromes and iron-restricted erythropoiesis (CME). Transfusion 52:1584–1592

    Article  PubMed  Google Scholar 

  • Gouya L, Puy H, Robreau AM, Bourgeois M, Lamoril J, Da Silva V, Grandchamp B, Deybach JC (2002) The penetrance of dominant erythropoietic protoporphyria is modulated by expression of wildtype FECH. Nat Genet 30:27–28

    Article  CAS  PubMed  Google Scholar 

  • Gulec S, Anderson GJ, Collins JF (2014) Mechanistic and regulatory aspects of intestinal iron absorption. Am J Physiol Gastrointest Liver Physiol 307:G397–G409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han AP, Fleming MD, Chen JJ (2005) Heme-regulated eIF2alpha kinase modifies the phenotypic severity of murine models of erythropoietic protoporphyria and beta-thalassemia. J Clin Invest 115:1562–1570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holme SA, Worwood M, Anstey AV, Elder GH, Badminton MN (2007) Erythropoiesis and iron metabolism in dominant erythropoietic protoporphyria. Blood 110:4108–4110

    Article  CAS  PubMed  Google Scholar 

  • Holme SA, Whatley SD, Roberts AG, Anstey AV, Elder GH, Ead RD, Stewart MF, Farr PM, Lewis HM, Davies N, White MI, Ackroyd RS, Badminton MN (2009) Seasonal palmar keratoderma in erythropoietic protoporphyria indicates autosomal recessive inheritance. J Investig Dermatol 129:599–605

    Article  CAS  PubMed  Google Scholar 

  • Hsiao EC, Koniaris LG, Zimmers-Koniaris T, Sebald SM, Huynh TV, Lee SJ (2000) Characterization of growth-differentiation factor 15, a transforming growth factor beta superfamily member induced following liver injury. Mol Cell Biol 20:3742–3751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kempf T, Zarbock A, Widera C, Butz S, Stadtmann A, Rossaint J, Bolomini-Vittori M, Korf-Klingebiel M, Napp LC, Hansen B, Kanwischer A, Bavendiek U, Beutel G, Hapke M, Sauer MG, Laudanna C, Hogg N, Vestweber D, Wollert KC (2011) GDF-15 is an inhibitor of leukocyte integrin activation required for survival after myocardial infarction in mice. Nat Med 17:581–588

    Article  CAS  PubMed  Google Scholar 

  • Kirkwood B, Sterne J (2003) Essential medical statistics, 2nd edn. Wiley, Oxford

    Google Scholar 

  • Koniaris LG (2003) Induction of MIC-1/growth differentiation factor-15 following bile duct injury. J Gastrointest Surg 7:901–905

    Article  PubMed  Google Scholar 

  • Lecha M, Puy H, Deybach JC (2009) Erythropoietic protoporphyria. Orphanet J Rare Dis 4:19

    Article  PubMed  PubMed Central  Google Scholar 

  • Lyoumi S, Abitbol M, Andrieu V, Henin D, Robert E, Schmitt C, Gouya L, de Verneuil H, Deybach JC, Montagutelli X, Beaumont C, Puy H (2007) Increased plasma transferrin, altered body iron distribution, and microcytic hypochromic anemia in ferrochelatase-deficient mice. Blood 109:811–818

    Article  CAS  PubMed  Google Scholar 

  • McClements BM, Bingham A, Callender ME, Trimble ER (1990) Erythropoietic protoporphyria and iron therapy. Br J Dermatol 122:423–424

    Article  CAS  PubMed  Google Scholar 

  • Milligan A, Graham-Brown RA, Sarkany I, Baker H (1988) Erythropoietic protoporphyria exacerbated by oral iron therapy. Br J Dermatol 119:63–66

    Article  CAS  PubMed  Google Scholar 

  • Minder EI, Schneider-Yin X (2008) Porphyrins, porphobilinogen, and δ–aminolevulinic acid. In: Blau N, Duran M, Gibson KM (eds) Laboratory guide to the methods in biochemical genetics. Springer, Berlin, pp 751–780

    Chapter  Google Scholar 

  • Minder EI, Schneider-Yin X, Mamet R, Horev L, Neuenschwander S, Baumer A, Austerlitz F, Puy H, Schoenfeld N (2010) A homoallelic FECH mutation in a patient with both erythropoietic protoporphyria and palmar keratoderma. J Eur Acad Dermatol Venereol 24:1349–1353

    Article  CAS  PubMed  Google Scholar 

  • Moore AG, Brown DA, Fairlie WD, Bauskin AR, Brown PK, Munier ML, Russell PK, Salamonsen LA, Wallace EM, Breit SN (2000) The transforming growth factor-ss superfamily cytokine macrophage inhibitory cytokine-1 is present in high concentrations in the serum of pregnant women. J Clin Endocrinol Metab 85:4781–4788

    CAS  PubMed  Google Scholar 

  • Murphy WG (2014) The sex difference in haemoglobin levels in adults—mechanisms, causes, and consequences. Blood Rev 28:41–47

    Article  CAS  PubMed  Google Scholar 

  • Musallam KM, Taher AT, Duca L, Cesaretti C, Halawi R, Cappellini MD (2011) Levels of growth differentiation factor-15 are high and correlate with clinical severity in transfusion-independent patients with beta thalassemia intermedia. Blood Cells Mol Dis 47:232–234

    Article  CAS  PubMed  Google Scholar 

  • Nicolas G, Bennoun M, Devaux I, Beaumont C, Grandchamp B, Kahn A, Vaulont S (2001) Lack of hepcidin gene expression and severe tissue iron overload in upstream stimulatory factor 2 (USF2) knockout mice. Proc Natl Acad Sci U S A 98:8780–8785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osada M, Park HL, Park MJ, Liu JW, Wu G, Trink B, Sidransky D (2007) A p53-type response element in the GDF15 promoter confers high specificity for p53 activation. Biochem Biophys Res Commun 354:913–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider-Yin X, Minder EI (2013) In: Ferreira GC (ed) Erythropoietic protoporphyria and X-linked dominant protoporphyria. World Scientific Publishing Company, Singapore, pp 299–328

    Google Scholar 

  • Schneider-Yin X, Harms J, Minder EI (2009) Porphyria in Switzerland, 15 years experience. Swiss Med Wkly 139:198–206

    CAS  PubMed  Google Scholar 

  • Sears DA, Anderson PR, Foy AL, Williams HL, Crosby WH (1966) Urinary iron excretion and renal metabolism of hemoglobin in hemolytic diseases. Blood 28:708–725

    CAS  PubMed  Google Scholar 

  • Simpson RJ, McKie AT (2009) Regulation of intestinal iron absorption: the mucosa takes control? Cell Metab 10:84–87

    Article  CAS  PubMed  Google Scholar 

  • Skikne BS, Flowers CH, Cook JD (1990) Serum transferrin receptor: a quantitative measure of tissue iron deficiency. Blood 75:1870–1876

    CAS  PubMed  Google Scholar 

  • Tanno T, Bhanu NV, Oneal PA, Goh SH, Staker P, Lee YT, Moroney JW, Reed CH, Luban NL, Wang RH, Eling TE, Childs R, Ganz T, Leitman SF, Fucharoen S, Miller JL (2007) High levels of GDF15 in thalassemia suppress expression of the iron regulatory protein hepcidin. Nat Med 13:1096–1101

    Article  CAS  PubMed  Google Scholar 

  • Tanno T, Noel P, Miller JL (2010) Growth differentiation factor 15 in erythroid health and disease. Curr Opin Hematol 17:184–190

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tong S, Marjono B, Brown DA, Mulvey S, Breit SN, Manuelpillai U, Wallace EM (2004) Serum concentrations of macrophage inhibitory cytokine 1 (MIC 1) as a predictor of miscarriage. Lancet 363:129–130

    Article  CAS  PubMed  Google Scholar 

  • Turnbull A, Baker H, Vernon-Roberts B, Magnus IA (1973) Iron metabolism in porphyria cutanea tarda and in erythropoietic protoporphyria. Q J Med 42:341–355

    CAS  PubMed  Google Scholar 

  • Wahlin S, Floderus Y, Stal P, Harper P (2011) Erythropoietic protoporphyria in Sweden: demographic, clinical, biochemical and genetic characteristics. J Intern Med 269:278–288

    Article  CAS  PubMed  Google Scholar 

  • Whatley SD, Ducamp S, Gouya L, Grandchamp B, Beaumont C, Badminton MN, Elder GH, Holme SA, Anstey AV, Parker M, Corrigall AV, Meissner PN, Hift RJ, Marsden JT, Ma Y, Mieli-Vergani G, Deybach JC, Puy H (2008) C-terminal deletions in the ALAS2 gene lead to gain of function and cause X-linked dominant protoporphyria without anemia or iron overload. Am J Hum Genet 83:408–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whatley SD, Mason NG, Holme SA, Anstey AV, Elder GH, Badminton MN (2010) Molecular epidemiology of erythropoietic protoporphyria in the U.K. Br J Dermatol 162:642–646

    Article  CAS  PubMed  Google Scholar 

  • Zimmers TA, Jin X, Hsiao EC, Perez EA, Pierce RH, Chavin KD, Koniaris LG (2006) Growth differentiation factor-15: induction in liver injury through p53 and tumor necrosis factor-independent mechanisms. J Surg Res 130:45–51

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Foundation of Scientific Research at Triemli Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabeth I. Minder.

Ethics declarations

Conflict of interest

None.

Additional information

Communicated by: Robert J Desnick

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barman-Aksoezen, J., Girelli, D., Aurizi, C. et al. Disturbed iron metabolism in erythropoietic protoporphyria and association of GDF15 and gender with disease severity. J Inherit Metab Dis 40, 433–441 (2017). https://doi.org/10.1007/s10545-017-0017-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-017-0017-7

Keywords

Navigation