Skip to main content
Log in

A new case of UDP-galactose transporter deficiency (SLC35A2-CDG): molecular basis, clinical phenotype, and therapeutic approach

  • Original Article
  • Published:
Journal of Inherited Metabolic Disease

Abstract

Congenital disorders of glycosylation (CDG) are a group of hereditary metabolic diseases characterized by abnormal glycosylation of proteins and lipids. Often, multisystem disorders with central nervous system involvement and a large variety of clinical symptoms occur. The main characteristics are developmental delay, seizures, and ataxia. In this paper we report the clinical and biochemical characteristics of a 5-year-old girl with a defective galactosylation of N-glycans, resulting in developmental delay, muscular hypotonia, epileptic seizures, inverted nipples, and visual impairment. Next generation sequencing revealed a de novo mutation (c.797G > T, p.G266V) in the X-chromosomal gene SLC35A2 (solute carrier family 35, UDP-galactose transporter, member A2; MIM 300896). While this mutation was found heterozygous, random X-inactivation of the normal allele will lead to loss of normal SLC35A2 activity in respective cells. The functional relevance of the mutation was demonstrated by complementation of UGT-deficient MDCK-RCAr and CHO-Lec8 cells by normal UGT-expression construct but not by the mutant version. The effect of dietary galactose supplementation on glycosylation was investigated, showing a nearly complete normalization of transferrin glycosylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ACTH:

Adrenocorticotropic hormone

CDG:

Congenital disorder of glycosylation

DPBS:

Dulbecco’s phosphate-buffered saline

EEG:

Electroencephalography

EOEE:

Early onset epileptic encephalopathy

ER:

Endoplasmic reticulum

ESI:

Electrospray ionization

HPLC:

High performance liquid chromatography

IEF:

Isoelectric focusing

IMPP:

Immunoprecipitation

MALDI:

Matrix-assisted laser desorption/ionization

MRI:

Magnetic resonance imaging

NSTs:

Nucleotide sugar transporters

OAE:

Otoacoustic emissions

RT-PCR:

Reverse transcription polymerase chain reaction

SDS-PAGE:

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

SLC family:

Solute carrier family

TF:

Transferrin

UGT:

UDP-galactose transporter

References

  • Biffi S, Tamaro G, Bortot B, Zamberlan S, Severini GM, Carrozzi M (2007) Carbohydrate deficient transferrin (CDT) as a biochemical tool for the screening of congenital disorders of glycosylation (CDGs). Clin Biochem 40:1431–1434

    Article  CAS  PubMed  Google Scholar 

  • Biskup S (2010) Molekualrgenetische und zytogenetische Diagnostik. Hochdurchsatz-Sequenzierung in der Humangenetischen Diagnostik. Next-generation sequencing in genetic diagnostics. J Lab Med 34(6):305–309

    CAS  Google Scholar 

  • Clayton P, Winchester B, Di Tomaso E, Young E, Keir G, Rodeck C (1993) Carbohydrate-deficient glycoprotein syndrome: normal glycosylation in the fetus. Lancet 341(8850):956

    Article  CAS  PubMed  Google Scholar 

  • Ferrari MC, Parini R, Di Rocco MD, Radetti G, Beck-Peccoz P, Persani L (2001) Lectin analyses of glycoprotein hormones in patients with congenital disorders of glycosylation. Eur J Endocrinol 144(4):409–416

    Article  CAS  PubMed  Google Scholar 

  • Freeze HH (2013) Understanding human glycosylation disorders: biochemistry leads the charge. J Biol Chem 288(10):6936–6945

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hanßke B, Thiel C, Lübke T et al (2002) Deficiency of UDP-galactose: N-acetylglucosamine ß-1,4-galactosyltransferase I causes the congenital disorder of glycosylation type IId. J Clin Invest 109(6):725–733

    Article  PubMed Central  PubMed  Google Scholar 

  • Hiraoka S, Furuichi T, Nishimura G et al (2007) Nucleotide-sugar transporter SLC35D1 is critical to chondroitin sulfate synthesis in cartilage and skeletal development in mouse and human. Nat Med 13(11):1363–1367

    Article  CAS  PubMed  Google Scholar 

  • Kabuß R, Ashikov A, Oelmann S, Gerardy-Schahn R, Bakker H (2005) Endoplasmic reticulum retention of the large splice variant of the UDP-galactose transporter is caused by a dilysine motif. Glycobiology 15(10):905–911

    Article  PubMed  Google Scholar 

  • Kniffin CL, Hamosh A, Converse PJ, McKusick VA (2013) Solute carrier family 35 (UDP-GALACTOSE TRANSPORTER), MEMBER 2; SLC35A2. http://omim.org/entry/314375

  • Kodera H, Nakamura K, Osaka H et al (2013) De novo mutations in SLC35A2 encoding a UDP-galactose transporter cause early-onset epileptic encephalopathy. Humu 0272

  • Liu L, Xu YX, Hirschberg CB (2010) The role of nucleotide sugar transporters in development of eukaryotes. Semin Cell Dev Biol 21(6):600–608

    Article  PubMed Central  PubMed  Google Scholar 

  • Lübke T, Marquardt T, Etzioni A, Hartmann E, von Figura K, Korner C (2001) Complementation cloning identifies CDG-IIc, a new type of congenital disorder of glycosylation, as a GDP-fucose transporter deficiency. Nat Genet 28(1):73–76

    PubMed  Google Scholar 

  • Lühn K, Wild MK, Eckhardt M, Gerardy-Schahn R, Vestweber D (2001) The gene defective in leukocyte adhesion deficiency II encodes a putative GDP-fucose transporter. Nat Genet 28(1):69–72

    PubMed  Google Scholar 

  • Lyon MF (1961) Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 190:372–373

    Article  CAS  PubMed  Google Scholar 

  • Mandato C, Brive L, Miura Y et al (2006) Cryptogenic liver disease in four children: a novel congenital disorder of glycosylation. Pediatr Res 59(2):293–298

    Article  PubMed  Google Scholar 

  • Marquardt T, Denecke J (2003) Congenital disorders of glycosylation: Review of their molecular bases, clinical presentations and specific therapies. Eur J Pediatr 162:359–379

    CAS  PubMed  Google Scholar 

  • Marquardt T, Lühn K, Srikrishna G, Freeze HH, Harms E, Vestweber D (1999) Correction of leukocyte adhesion deficiency type II with oral fucose. Blood 94(12):3976–3985

    CAS  PubMed  Google Scholar 

  • Martinez I, Duncker I, Dupre T et al (2005) Genetic complementation reveals a novel human congenital disorder of glycosylation of type II, due to inactivation of the Golgi CMP-sialic acid transporter. Blood 105(7):2671–2676

    Article  Google Scholar 

  • Maszczak-Seneczko D, Olczak T, Wunderlich L, Olczak M (2011) Comparative analysis of involvement of UGT1 and UGT2 splice variants of UDP-galactose transporter in glycosylation of macromolecules in MDCK and CHO cell lines. Glycoconj J 28:481–492

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nakamura N, Rabouille C, Watson R et al (1995) Characterization of cis-Golgi matrix protein, GM130. J Cell Biol 131:1715–1726

    Article  CAS  PubMed  Google Scholar 

  • Ng BG, Buckingham KJ, Raymond K et al (2013) Mosaicism of the UDP-galactose transporter SLC35A2 causes a congenital disorder of glycosylation. Am J Hum Genet 92:632–636

  • Niehues R, Hasilik M, Alton G et al (1998) Carbohydrate-deficient glycoprotein syndrome type Ib. Phosphomannose isomerase deficiency and mannose therapy. J Clin Invest 101:1414–1420

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Olczak M, Guillen E (2006) Characterization of a mutation and an alternative splicing of UDP-galactose transporter in MDCK-RCAr cell line. Biochim Biophys Acta 1763(1):82–92

    Article  CAS  PubMed  Google Scholar 

  • Olczak M, Maszczak-Seneczko D, Sosicka P, Jakimowicz P, Olczak T (2013) UDP Gal/UDP-GlcNAc chimeric transporter complements mutation defect in mammalian cells deficient in UDP-Gal transporter. Biochem Biophys Res Commun 434(3):473–478

    Article  CAS  PubMed  Google Scholar 

  • Song Z (2013) Roles of the nucleotide sugar transporters (SLC35 family) in health and disease. Mol Asp Med 34:590–600

    Article  CAS  Google Scholar 

  • Sprong H, Degroote S, Nilsson T et al (2003) Association of the Golgi UDP-galactose transporter with UDP-galactose:ceramide galactosyltransferase allows UDP-galactose import in the endoplasmic reticulum. Mol Biol Cell 14(9):3482–3493

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stanley P (1989) Chinese hamster ovary cell mutants with multiple glcosylation defects for production of glycoproteins with minimal carbohydrate heterogeneity. Mol Cell Biol 9(2):377–383

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tegtmeyer LC, Rust S, van Scherpenzeel M et al (2014) Multiple phenotypes in phosphoglucomutase 1 deficiency. N Engl J Med 370:533–542

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vallot C, Rougeulle C (2013) Inactivation du chromosome X chez l’humain XACT et XIST,à chacun son chromosome. Médecine/Sciences 29(2):223–225

    Article  Google Scholar 

  • Wada Y, Tajiri M, Yoshida S (2004) Hydrophilic affinity isolation and MALDI multiple-stage tandem mass spectrometry of glycopeptides for glycoproteomics. Anal Chem 76(22):6560–6565

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Maria Plate, Martina Herting and Ingrid Du Chesne for technical assistance. Vitaflo is acknowledged for providing D-galactose for oral supplementation.

Compliance with ethics guidelines

Conflict of interest

None.

Informed consent

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000(5). Informed consent was obtained from all patients for being included in the study.

Additional informed consent was obtained from all patients for whom identifying information is included in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Marquardt.

Additional information

Communicated by: Eva Morava

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 48 kb)

ESM 2

(GIF 583 kb)

High Resolution Image

(TIFF 1277 kb)

ESM 3ESM 4

(GIF 984 kb)

(GIF 1301 kb)

High Resolution Image

(TIFF 493 kb)

High Resolution Image

(TIFF 248 kb)

ESM 5

(GIF 106 kb)

High Resolution Image

(TIFF 3538 kb)

ESM 6

(GIF 141 kb)

High Resolution Image

(TIFF 1912 kb)

ESM 7

(GIF 128 kb)

High Resolution Image

(TIFF 1144 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dörre, K., Olczak, M., Wada, Y. et al. A new case of UDP-galactose transporter deficiency (SLC35A2-CDG): molecular basis, clinical phenotype, and therapeutic approach. J Inherit Metab Dis 38, 931–940 (2015). https://doi.org/10.1007/s10545-015-9828-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-015-9828-6

Keywords

Navigation