Skip to main content
Log in

X-linked creatine transporter deficiency: clinical aspects and pathophysiology

  • Metabolic Dissertation
  • Published:
Journal of Inherited Metabolic Disease

Abstract

Creatine transporter deficiency was discovered in 2001 as an X-linked cause of intellectual disability characterized by cerebral creatine deficiency. This review describes the current knowledge regarding creatine metabolism, the creatine transporter and the clinical aspects of creatine transporter deficiency. The condition mainly affects the brain while other creatine requiring organs, such as the muscles, are relatively spared. Recent studies have provided strong evidence that creatine synthesis also occurs in the brain, leading to the intriguing question of why cerebral creatine is deficient in creatine transporter deficiency. The possible mechanisms explaining the cerebral creatine deficiency are discussed. The creatine transporter knockout mouse provides a good model to study the disease. Over the past years several treatment options have been explored but no treatment has been proven effective. Understanding the pathogenesis of creatine transporter deficiency is of paramount importance in the development of an effective treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AGAT:

arginine:glycine amidinotransferase

AGAT-D:

AGAT deficiency

AMPK:

AMP-activated protein kinase

BBB:

blood–brain barrier

β-GPA:

β-guanidinopropionate

CDS:

creatine deficiency syndromes

CK:

creatine kinase

Cr:

creatine

Crn:

creatinine

Cr/Crn:

creatine/creatinine ratio

CRTR:

creatine transporter

CRTR-D:

creatine transporter deficiency

CSF:

cerebrospinal fluid

GAA:

guanidinoacetate

GAMT:

guanidinoacetate methyltransferase

GAMT-D:

GAMT deficiency

1H-MRS:

proton magnetic-resonance spectroscopy

ID:

intellectual disability

JAK2:

Janus-activated kinase-2

LeuT:

leucine transporter

MCT12:

monocarboxylate transporter 12

PKC:

protein kinase C

SAM:

S-adenosylmethionine

TM:

transmembrane

XL-ID:

X-linked intellectual disability

References

  • Abplanalp J, Laczko E, Philp N et al (2013) The cataract and glucosuria associated monocarboxylate transporter MCT12 is a new creatine transporter. Hum Mol Genet 22(16):3218–26

    CAS  PubMed Central  PubMed  Google Scholar 

  • Adriano E, Garbati P, Damonte G, Salis A, Armirotti A, Balestrino M (2011) Searching for a therapy of creatine transporter deficiency: some effects of creatine ethyl ester in brain slices in vitro. Neuroscience 199:386–393

    CAS  PubMed  Google Scholar 

  • Alfieri RR, Bonelli MA, Cavazzoni A et al (2006) Creatine as a compatible osmolyte in muscle cells exposed to hypertonic stress. J Physiol 576(Pt 2):391–401

    CAS  PubMed Central  PubMed  Google Scholar 

  • Allen PJ (2012) Creatine metabolism and psychiatric disorders: Does creatine supplementation have therapeutic value? Neurosci Biobehav Rev 36(5):1442–1462

    CAS  PubMed Central  PubMed  Google Scholar 

  • Almeida LS, Verhoeven NM, Roos B et al (2004) Creatine and guanidinoacetate: diagnostic markers for inborn errors in creatine biosynthesis and transport. Mol Genet Metab 82(3):214–219

    CAS  PubMed  Google Scholar 

  • Almeida LS, Salomons GS, Hogenboom F, Jakobs C, Schoffelmeer ANM (2006) Exocytotic release of creatine in rat brain. Synapse 60(2):118–123

    CAS  PubMed  Google Scholar 

  • Andres RH, Ducray AD, Schlattner U, Wallimann T, Widmer HR (2008) Functions and effects of creatine in the central nervous system. Brain Res Bull 76(4):329–343

    CAS  PubMed  Google Scholar 

  • Anselm IA, Alkuraya FS, Salomons GS et al (2006) X-linked creatine transporter defect: a report on two unrelated boys with a severe clinical phenotype. J Inherit Metab Dis 29(1):214–219

    CAS  PubMed Central  PubMed  Google Scholar 

  • Anselm IA, Coulter DL, Darras BT (2008) Cardiac manifestations in a child with a novel mutation in creatine transporter gene SLC6A8. Neurology 70(18):1642–1644

    PubMed  Google Scholar 

  • Arias A, Ormazabal A, Moreno J et al (2006) Methods for the diagnosis of creatine deficiency syndromes: a comparative study. J Neurosci Methods 156(1–2):305–309

    CAS  PubMed  Google Scholar 

  • Arias A, Corbella M, Fons C et al (2007) Creatine transporter deficiency: prevalence among patients with mental retardation and pitfalls in metabolite screening. Clin Biochem 40(16–17):1328–1331

    CAS  PubMed  Google Scholar 

  • Barnwell LF, Chaudhuri G, Townsel JG (1995) Cloning and sequencing of a cDNA encoding a novel member of the human brain GABA/noradrenaline neurotransmitter transporter family. Gene 159(2):287–288

    CAS  PubMed  Google Scholar 

  • Battini R, Leuzzi V, Carducci C et al (2002) Creatine depletion in a new case with AGAT deficiency: clinical and genetic study in a large pedigree. Mol Genet Metab 77(4):326–331

    CAS  PubMed  Google Scholar 

  • Battini R, Alessandri MG, Leuzzi V et al (2006) Arginine:glycine amidinotransferase (AGAT) deficiency in a newborn: early treatment can prevent phenotypic expression of the disease. J Pediatr 148(6):828–830

    CAS  PubMed  Google Scholar 

  • Bayou N, M’rad R, Belhaj A et al (2008) The creatine transporter gene paralogous at 16p11.2 is expressed in human brain. Comp Funct Genomics 2008:609684. doi:10.1155/2008/609684

  • Belanger M, Asashima T, Ohtsuki S, Yamaguchi H, Ito S, Terasaki T (2007) Hyperammonemia induces transport of taurine and creatine and suppresses claudin-12 gene expression in brain capillary endothelial cells in vitro. Neurochem Int 50(1):95–101

    CAS  PubMed  Google Scholar 

  • Betsalel OT, van de Kamp JM, Martinez-Munoz C et al (2008) Detection of low-level somatic and germline mosaicism by denaturing high-performance liquid chromatography in a EURO-MRX family with SLC6A8 deficiency. Neurogenetics 9(3):183–190

    CAS  PubMed  Google Scholar 

  • Betsalel OT, Rosenberg EH, Almeida LS et al (2011) Characterization of novel SLC6A8 variants with the use of splice-site analysis tools and implementation of a newly developed LOVD database. Eur J Hum Genet 19(1):56–63

    PubMed Central  PubMed  Google Scholar 

  • Betsalel OT, Pop A, Rosenberg EH, Fernandez-Ojeda M, Jakobs C, Salomons GS (2012) Detection of variants in SLC6A8 and functional analysis of unclassified missense variants. Mol Genet Metab 105(4):596–601

    CAS  PubMed  Google Scholar 

  • Bianchi MC, Tosetti M, Fornai F et al (2000) Reversible brain creatine deficiency in two sisters with normal blood creatine level. Ann Neurol 47(4):511–513

    CAS  PubMed  Google Scholar 

  • Bianchi MC, Tosetti M, Battini R et al (2007) Treatment monitoring of brain creatine deficiency syndromes: a 1H- and 31P-MR spectroscopy study. AJNR Am J Neuroradiol 28(3):548–554

    CAS  PubMed  Google Scholar 

  • Bizzi A, Bugiani M, Salomons GS et al (2002) X-linked creatine deficiency syndrome: a novel mutation in creatine transporter gene SLC6A8. Ann Neurol 52(2):227–231

    CAS  PubMed  Google Scholar 

  • Bodamer OA, Bloesch SM, Gregg AR, Stockler-Ipsiroglu S, O'Brien WE (2001) Analysis of guanidinoacetate and creatine by isotope dilution electrospray tandem mass spectrometry. Clin Chim Acta 308(1–2):173–178

    CAS  PubMed  Google Scholar 

  • Bodamer OA, Iqbal F, Muhl A et al (2009) Low creatinine: the diagnostic clue for a treatable neurologic disorder. Neurology 72(9):854–855

    CAS  PubMed  Google Scholar 

  • Boehm E, Chan S, Monfared M, Wallimann T, Clarke K, Neubauer S (2003) Creatine transporter activity and content in the rat heart supplemented by and depleted of creatine. Am J Physiol Endocrinol Metab 284(2):E399–E406

    CAS  PubMed  Google Scholar 

  • Bothwell JH, Rae C, Dixon RM, Styles P, Bhakoo KK (2001) Hypo-osmotic swelling-activated release of organic osmolytes in brain slices: implications for brain oedema in vivo. J Neurochem 77(6):1632–1640

    CAS  PubMed  Google Scholar 

  • Bothwell JH, Styles P, Bhakoo KK (2002) Swelling-activated taurine and creatine effluxes from rat cortical astrocytes are pharmacologically distinct. J Membr Biol 185(2):157–164

    CAS  PubMed  Google Scholar 

  • Braissant O (2012) Creatine and guanidinoacetate transport at blood–brain and blood-cerebrospinal fluid barriers. J Inherit Metab Dis 35(4):655–664

    CAS  PubMed  Google Scholar 

  • Braissant O, Henry H (2008) AGAT, GAMT and SLC6A8 distribution in the central nervous system, in relation to creatine deficiency syndromes: A review. J Inherit Metab Dis 31(2):230–9

    CAS  PubMed  Google Scholar 

  • Braissant O, Henry H, Loup M, Eilers B, Bachmann C (2001) Endogenous synthesis and transport of creatine in the rat brain: an in situ hybridization study. Brain Res Mol Brain Res 86(1–2):193–201

    CAS  PubMed  Google Scholar 

  • Braissant O, Henry H, Villard AM, Speer O, Wallimann T, Bachmann C (2005) Creatine synthesis and transport during rat embryogenesis: spatiotemporal expression of AGAT, GAMT and CT1. BMC Dev Biol 5:9

    PubMed Central  PubMed  Google Scholar 

  • Braissant O, Cagnon L, Monnet-Tschudi F et al (2008) Ammonium alters creatine transport and synthesis in a 3D culture of developing brain cells, resulting in secondary cerebral creatine deficiency. Eur J Neurosci 27(7):1673–1685

    PubMed  Google Scholar 

  • Braissant O, Beard E, Torrent C, Henry H (2010) Dissociation of AGAT, GAMT and SLC6A8 in CNS: relevance to creatine deficiency syndromes. Neurobiol Dis 37(2):423–433

    CAS  PubMed  Google Scholar 

  • Braissant O, Henry H, Beard E, Uldry J (2011) Creatine deficiency syndromes and the importance of creatine synthesis in the brain. Amino Acids 40(5):1315–1324

    CAS  PubMed  Google Scholar 

  • Brault JJ, Abraham KA, Terjung RL (2003) Muscle creatine uptake and creatine transporter expression in response to creatine supplementation and depletion. J Appl Physiol 94(6):2173–2180

    CAS  PubMed  Google Scholar 

  • Brosnan JT, Brosnan ME (2007) Creatine: endogenous metabolite, dietary, and therapeutic supplement. Annu Rev Nutr 27:241–261

    CAS  PubMed  Google Scholar 

  • Brosnan JT, da Silva RP, Brosnan ME (2011) The metabolic burden of creatine synthesis. Amino Acids 40(5):1325–1331

    CAS  PubMed  Google Scholar 

  • Cacciagli P, Sutera-Sardo J, Borges-Correia A et al (2013) Mutations in BCAP31 Cause a Severe X-Linked Phenotype with Deafness, Dystonia, and Central Hypomyelination and Disorganize the Golgi Apparatus. Am J Hum Genet 93(3):579–586

    CAS  PubMed Central  PubMed  Google Scholar 

  • Caldeira Araujo H, Smit W, Verhoeven NM et al (2005) Guanidinoacetate methyltransferase deficiency identified in adults and a child with mental retardation. Am J Med Genet A 133A(2):122–127

    CAS  PubMed  Google Scholar 

  • Carducci C, Birarelli M, Leuzzi V et al (2002) Guanidinoacetate and creatine plus creatinine assessment in physiologic fluids: an effective diagnostic tool for the biochemical diagnosis of arginine:glycine amidinotransferase and guanidinoacetate methyltransferase deficiencies. Clin Chem 48(10):1772–1778

    CAS  PubMed  Google Scholar 

  • Carducci C, Carducci C, Santagata S et al (2012) In vitro study of uptake and synthesis of creatine and its precursors by cerebellar granule cells and astrocytes suggests some hypotheses on the physiopathology of the inherited disorders of creatine metabolism. BMC Neurosci 13:41

    CAS  PubMed Central  PubMed  Google Scholar 

  • Castorino JJ, Gallagher-Colombo SM, Levin AV et al (2011) Juvenile cataract-associated mutation of solute carrier SLC16A12 impairs trafficking of the protein to the plasma membrane. Invest Ophthalmol Vis Sci 52(9):6774–6784

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cecil KM, Salomons GS, Ball WSJ et al (2001) Irreversible brain creatine deficiency with elevated serum and urine creatine: a creatine transporter defect? Ann Neurol 49(3):401–404

    CAS  PubMed  Google Scholar 

  • Cheillan D, Joncquel-Chevalier Curt M, Briand G et al (2012) Screening for primary creatine deficiencies in French patients with unexplained neurological symptoms. Orphanet J Rare Dis 7

  • Chen NH, Reith MEA, Quick MW (2004) Synaptic uptake and beyond: the sodium- and chloride-dependent neurotransmitter transporter family SLC6. Pflugers Arch 447(5):519–531

    CAS  PubMed  Google Scholar 

  • Chilosi A, Leuzzi V, Battini R et al (2008) Treatment with L-arginine improves neuropsychological disorders in a child with creatine transporter defect. Neurocase 14(2):151–161

    PubMed  Google Scholar 

  • Chilosi A, Casarano M, Comparini A et al (2012) Neuropsychological profile and clinical effects of arginine treatment in children with creatine transport deficiency. Orphanet J Rare Dis 7(1):43

    PubMed Central  PubMed  Google Scholar 

  • Choe C, Nabuurs C, Stockebrand MC et al (2013) L-arginine:glycine amidinotransferase deficiency protects from metabolic syndrome. Hum Mol Genet 22(1):110–123

    CAS  PubMed  Google Scholar 

  • Christie DL (2007) Functional insights into the creatine transporter. Subcell Biochem 46:99–118

    PubMed  Google Scholar 

  • Clark AJ, Rosenberg EH, Almeida LS et al (2006) X-linked creatine transporter (SLC6A8) mutations in about 1 % of males with mental retardation of unknown etiology. Hum Genet 119(6):604–610

    CAS  PubMed  Google Scholar 

  • Cullen ME, Yuen AHY, Felkin LE et al (2006) Myocardial expression of the arginine:glycine amidinotransferase gene is elevated in heart failure and normalized after recovery: potential implications for local creatine synthesis. Circulation 114(1 Suppl):I16–I20

    PubMed  Google Scholar 

  • da Silva RP, Nissim I, Brosnan ME, Brosnan JT (2009) Creatine synthesis: hepatic metabolism of guanidinoacetate and creatine in the rat in vitro and in vivo. Am J Physiol Endocrinol Metab 296(2):E256–E261

    PubMed Central  PubMed  Google Scholar 

  • Dai W, Vinnakota S, Qian X, Kunze DL, Sarkar HK (1999) Molecular characterization of the human CRT-1 creatine transporter expressed in Xenopus oocytes. Arch Biochem Biophys 361(1):75–84

    CAS  PubMed  Google Scholar 

  • Daly MM, Seifter S (1980) Uptake of creatine by cultured cells. Arch Biochem Biophys 203(1):317–324

    CAS  PubMed  Google Scholar 

  • Darrabie MD, Arciniegas AJL, Mishra R, Bowles DE, Jacobs DO, Santacruz L (2011) AMPK and substrate availability regulate creatine transport in cultured cardiomyocytes. Am J Physiol Endocrinol Metab 300(5):E870–E876

    CAS  PubMed  Google Scholar 

  • de Souza CF, Kalloniatis M, Christie DL, Polkinghorne PJ, McGhee CNJ, Acosta ML (2012) Creatine transporter immunolocalization in aged human and detached retinas. Invest Ophthalmol Vis Sci 53(4):1936–1945

    PubMed  Google Scholar 

  • Dechent P, Pouwels PJ, Wilken B, Hanefeld F, Frahm J (1999) Increase of total creatine in human brain after oral supplementation of creatine-monohydrate. Am J Physiol 277(3 Pt 2):R698–R704

    CAS  PubMed  Google Scholar 

  • Defalco AJ, Davies RK (1961) The synthesis of creatine by the brain of the intact rat. J Neurochem 7:308–312

    CAS  PubMed  Google Scholar 

  • DeGrauw TJ, Salomons GS, Cecil KM et al (2002) Congenital creatine transporter deficiency. Neuropediatrics 33(5):232–238

    CAS  PubMed  Google Scholar 

  • Degrauw TJ, Cecil KM, Byars AW, Salomons GS, Ball WS, Jakobs C (2003) The clinical syndrome of creatine transporter deficiency. Mol Cell Biochem 244(1–2):45–48

    CAS  PubMed  Google Scholar 

  • Dezortova M, Jiru F, Petrasek J et al (2008) 1H MR spectroscopy as a diagnostic tool for cerebral creatine deficiency. MAGMA 21(5):327–332

    CAS  PubMed  Google Scholar 

  • Dhar SU, Scaglia F, Li FY et al (2009) Expanded clinical and molecular spectrum of guanidinoacetate methyltransferase (GAMT) deficiency. Mol Genet Metab 96(1):38–43

    CAS  PubMed  Google Scholar 

  • Dodd JR, Christie DL (2005) Substituted cysteine accessibility of the third transmembrane domain of the creatine transporter: defining a transport pathway. J Biol Chem 280(38):32649–32654

    CAS  PubMed  Google Scholar 

  • Dodd JR, Christie DL (2007) Selective amino acid substitutions convert the creatine transporter to a gamma-aminobutyric acid transporter. J Biol Chem 282(21):15528–15533

    CAS  PubMed  Google Scholar 

  • Dodd JR, Zheng T, Christie DL (1999) Creatine accumulation and exchange by HEK293 cells stably expressing high levels of a creatine transporter. Biochim Biophys Acta 1472(1–2):128–136

    CAS  PubMed  Google Scholar 

  • Dodd JR, Birch NP, Waldvogel HJ, Christie DL (2010) Functional and immunocytochemical characterization of the creatine transporter in rat hippocampal neurons. J Neurochem 115(3):684–693

    CAS  PubMed  Google Scholar 

  • Dringen R, Verleysdonk S, Hamprecht B, Willker W, Leibfritz D, Brand A (1998) Metabolism of glycine in primary astroglial cells: synthesis of creatine, serine, and glutathione. J Neurochem 70(2):835–840

    CAS  PubMed  Google Scholar 

  • Edison EE, Brosnan ME, Meyer C, Brosnan JT (2007) Creatine synthesis: production of guanidinoacetate by the rat and human kidney in vivo. Am J Physiol Renal Physiol 293(6):F1799–F1804

    CAS  PubMed  Google Scholar 

  • Edvardson S, Korman SH, Livne A et al (2010) l-arginine:glycine amidinotransferase (AGAT) deficiency: clinical presentation and response to treatment in two patients with a novel mutation. Mol Genet Metab 101(2–3):228–232

    CAS  PubMed  Google Scholar 

  • Eichler EE, Lu F, Shen Y et al (1996) Duplication of a gene-rich cluster between 16p11.1 and Xq28: a novel pericentromeric-directed mechanism for paralogous genome evolution. Hum Mol Genet 5(7):899–912

    CAS  PubMed  Google Scholar 

  • Engelke UFH, Tassini M, Hayek J et al (2009) Guanidinoacetate methyltransferase (GAMT) deficiency diagnosed by proton NMR spectroscopy of body fluids. NMR Biomed 22(5):538–544

    CAS  PubMed  Google Scholar 

  • Enrico A, Patrizia G, Luisa P et al (2013) Electrophysiology and biochemical analysis of cyclocreatine uptake and effect in hippocampal slices. J Integr Neurosci 12(2):285–297

    PubMed  Google Scholar 

  • Ensenauer R, Thiel T, Schwab KO et al (2004) Guanidinoacetate methyltransferase deficiency: differences of creatine uptake in human brain and muscle. Mol Genet Metab 82(3):208–213

    CAS  PubMed  Google Scholar 

  • Evangeliou A, Vasilaki K, Karagianni P et al (2009) Clinical applications of creatine supplementation on paediatrics. Curr Pharm Biotechnol 10(7):683–690

    CAS  PubMed  Google Scholar 

  • Fons C, Sempere A, Arias A et al (2008) Arginine supplementation in four patients with X-linked creatine transporter defect. J Inherit Metab Dis 31(6):724–728

    CAS  PubMed  Google Scholar 

  • Fons C, Arias A, Sempere A et al (2010) Response to creatine analogs in fibroblasts and patients with creatine transporter deficiency. Mol Genet Metab 99(3):296–299

    CAS  PubMed  Google Scholar 

  • Ganesan V, Johnson A, Connelly A, Eckhardt S, Surtees RA (1997) Guanidinoacetate methyltransferase deficiency: new clinical features. Pediatr Neurol 17(2):155–157

    CAS  PubMed  Google Scholar 

  • Garcia-Delgado M, Peral MJ, Cano M et al (2001) Creatine transport in brush-border membrane vesicles isolated from rat kidney cortex. J Am Soc Nephrol 12(9):1819–1825

    CAS  PubMed  Google Scholar 

  • Garcia-Delgado M, Garcia-Miranda P, Peral MJ et al (2007) Ontogeny up-regulates renal Na(+)/Cl(−)/creatine transporter in rat. Biochim Biophys Acta 1768(11):2841–2848

    CAS  PubMed  Google Scholar 

  • Garcia-Miranda P, Garcia-Delgado M, Peral MJ et al (2009) Ontogeny regulates creatine metabolism in rat small and large intestine. J Physiol Pharmacol 60(3):127–133

    CAS  PubMed  Google Scholar 

  • Gerber GB, Gerber G, Koszalka TR, Miller LL (1962) The rate of creatine synthesis in the isolated, perfused rat liver. J Biol Chem 237:2246–2250

    CAS  PubMed  Google Scholar 

  • Gonzalez AM, Uhl GR (1994) ‘Choline/orphan V8-2-1/creatine transporter’ mRNA is expressed in nervous, renal and gastrointestinal systems. Brain Res Mol Brain Res 23(3):266–270

    CAS  PubMed  Google Scholar 

  • Grunau C, Hindermann W, Rosenthal A (2000) Large-scale methylation analysis of human genomic DNA reveals tissue-specific differences between the methylation profiles of genes and pseudogenes. Hum Mol Genet 9(18):2651–2663

    CAS  PubMed  Google Scholar 

  • Guerrero-Ontiveros ML, Wallimann T (1998) Creatine supplementation in health and disease. Effects of chronic creatine ingestion in vivo: down-regulation of the expression of creatine transporter isoforms in skeletal muscle. Mol Cell Biochem 184(1–2):427–437

    CAS  PubMed  Google Scholar 

  • Guimbal C, Kilimann MW (1993) A Na(+)-dependent creatine transporter in rabbit brain, muscle, heart, and kidney. cDNA cloning and functional expression. J Biol Chem 268(12):8418–8421

    CAS  PubMed  Google Scholar 

  • Guimbal C, Kilimann MW (1994) A creatine transporter cDNA from Torpedo illustrates structure/function relationships in the GABA/noradrenaline transporter family. J Mol Biol 241(2):317–324

    CAS  PubMed  Google Scholar 

  • Hahn KA, Salomons GS, Tackels-Horne D et al (2002) X-linked mental retardation with seizures and carrier manifestations is caused by a mutation in the creatine-transporter gene (SLC6A8) located in Xq28. Am J Hum Genet 70(5):1349–1356

    CAS  PubMed Central  PubMed  Google Scholar 

  • Happe HK, Murrin LC (1995) In situ hybridization analysis of CHOT1, a creatine transporter, in the rat central nervous system. J Comp Neurol 351(1):94–103

    CAS  PubMed  Google Scholar 

  • Harris RC, Soderlund K, Hultman E (1992) Elevation of creatine in resting and exercised muscle of normal subjects by creatine supplementation. Clin Sci (Lond) 83(3):367–374

    CAS  Google Scholar 

  • Hathaway SC, Friez M, Limbo K et al (2010) X-linked creatine transporter deficiency presenting as a mitochondrial disorder. J Child Neurol 25(8):1009–1012

    PubMed  Google Scholar 

  • Hautman E, Kokenge A, Udobi K et al (2013) Female mice heterozygous for creatine transporter deficiency show moderate cognitive deficits. J Inherit Metab Dis 16(6):1383–94

    Google Scholar 

  • Hinnell C, Samuel M, Alkufri F et al (2011) Creatine deficiency syndromes: diagnostic pearls and pitfalls. Can J Neurol Sci 38(5):765–767

    PubMed  Google Scholar 

  • Hoberman HD, Sims EAH, Peters JH (1948) Creatine and creatinine metabolism in the normal male adult studied with the aid of isotopic nitrogen. J Biol Chem 172(1):45–58

    CAS  PubMed  Google Scholar 

  • Hoglund PJ, Adzic D, Scicluna SJ, Lindblom J, Fredriksson R (2005) The repertoire of solute carriers of family 6: identification of new human and rodent genes. Biochem Biophys Res Commun 336(1):175–189

    PubMed  Google Scholar 

  • Hunter A (1928) Creatine and creatinine. Longmans, Green, London

    Google Scholar 

  • Ipsiroglu OS, Stromberger C, Ilas J, Hoger H, Muhl A, Stockler-Ipsiroglu S (2001) Changes of tissue creatine concentrations upon oral supplementation of creatine-monohydrate in various animal species. Life Sci 69(15):1805–1815

    CAS  PubMed  Google Scholar 

  • Iqbal F, Item CB, Ratschmann R et al (2011) Molecular analysis of guanidinoacetate-n-methyltransferase (GAMT) and creatine transporter (SLC6A8) gene by using denaturing high pressure liquid chromatography (DHPLC) as a possible source of human male infertility. Pak J Pharm Sci 24(1):75–79

    CAS  PubMed  Google Scholar 

  • Item CB, Stockler-Ipsiroglu S, Stromberger C et al (2001) Arginine:glycine amidinotransferase deficiency: the third inborn error of creatine metabolism in humans. Am J Hum Genet 69(5):1127–1133

    CAS  PubMed Central  PubMed  Google Scholar 

  • Iyer GS, Krahe R, Goodwin LA et al (1996) Identification of a testis-expressed creatine transporter gene at 16p11.2 and confirmation of the X-linked locus to Xq28. Genomics 34(1):143–146

    CAS  PubMed  Google Scholar 

  • Joncquel-Chevalier Curt M, Cheillan D, Briand G et al (2013) Creatine and guanidinoacetate reference values in a French population. Mol Genet Metab 110(3):263–267

    CAS  PubMed  Google Scholar 

  • Kan HE, Renema WKJ, Isbrandt D, Heerschap A (2004) Phosphorylated guanidinoacetate partly compensates for the lack of phosphocreatine in skeletal muscle of mice lacking guanidinoacetate methyltransferase. J Physiol 560(Pt 1):219–229

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kan HE, van der Graaf M, Klomp DWJ et al (2006) Intake of 13C-4 creatine enables simultaneous assessment of creatine and phosphocreatine pools in human skeletal muscle by 13C MR spectroscopy. Magn Reson Med 56(5):953–957

    CAS  PubMed  Google Scholar 

  • Kan HE, Meeuwissen E, van Asten JJ et al (2007) Creatine uptake in brain and skeletal muscle of mice lacking guanidinoacetate methyltransferase assessed by magnetic resonance spectroscopy. J Appl Physiol 102(6):2121–2127

    CAS  PubMed  Google Scholar 

  • Kato H, Miyake F, Shimbo H et al (2013) Urine screening for patients with developmental disabilities detected a patient with creatine transporter deficiency due to a novel missense mutation in SLC6A8. Brain Dev doi:10.1016/j.braindev.2013.08.004

  • Kleefstra T, Rosenberg EH, Salomons GS et al (2005) Progressive intestinal, neurological and psychiatric problems in two adult males with cerebral creatine deficiency caused by an SLC6A8 mutation. Clin Genet 68(4):379–381

    CAS  PubMed  Google Scholar 

  • Kloeckener-Gruissem B, Vandekerckhove K, Nurnberg G et al (2008) Mutation of solute carrier SLC16A12 associates with a syndrome combining juvenile cataract with microcornea and renal glucosuria. Am J Hum Genet 82(3):772–779

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kristensen AS, Andersen J, Jorgensen TN et al (2011) SLC6 neurotransmitter transporters: structure, function, and regulation. Pharmacol Rev 63(3):585–640

    CAS  PubMed  Google Scholar 

  • Kurosawa Y, Degrauw TJ, Lindquist DM et al (2012) Cyclocreatine treatment improves cognition in mice with creatine transporter deficiency. J Clin Invest 122(8):2837–2846

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leuzzi V, Bianchi MC, Tosetti M et al (2000) Brain creatine depletion: guanidinoacetate methyltransferase deficiency (improving with creatine supplementation). Neurology 55(9):1407–1409

    CAS  PubMed  Google Scholar 

  • Leuzzi V, Alessandri MG, Casarano M et al (2008) Arginine and glycine stimulate creatine synthesis in creatine transporter 1-deficient lymphoblasts. Anal Biochem 375(1):153–155

    CAS  PubMed  Google Scholar 

  • Li H, Thali RF, Smolak C et al (2010) Regulation of the creatine transporter by AMP-activated protein kinase in kidney epithelial cells. Am J Physiol Renal Physiol 299(1):F167–F177

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lion-Francois L, Cheillan D, Pitelet G et al (2006) High frequency of creatine deficiency syndromes in patients with unexplained mental retardation. Neurology 67(9):1713–1714

    CAS  PubMed  Google Scholar 

  • Loike JD, Zalutsky DL, Kaback E, Miranda AF, Silverstein SC (1988) Extracellular creatine regulates creatine transport in rat and human muscle cells. Proc Natl Acad Sci U S A 85(3):807–811

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lunardi G, Parodi A, Perasso L et al (2006) The creatine transporter mediates the uptake of creatine by brain tissue, but not the uptake of two creatine-derived compounds. Neuroscience 142(4):991–997

    CAS  PubMed  Google Scholar 

  • Lygate CA, Aksentijevic D, Dawson D et al (2013) Living without creatine: unchanged exercise capacity and response to chronic myocardial infarction in creatine-deficient mice. Circ Res 112(6):945–955

    CAS  PubMed  Google Scholar 

  • Mak CSW, Waldvogel HJ, Dodd JR et al (2009) Immunohistochemical localisation of the creatine transporter in the rat brain. Neuroscience 163(2):571–585

    CAS  PubMed  Google Scholar 

  • Mancardi MM, Caruso U, Schiaffino MC et al (2007) Severe epilepsy in X-linked creatine transporter defect (CRTR-D). Epilepsia 48(6):1211–1213

    CAS  PubMed  Google Scholar 

  • Mancini GMS, Catsman-Berrevoets CE, de Coo IFM et al (2005) Two novel mutations in SLC6A8 cause creatine transporter defect and distinctive X-linked mental retardation in two unrelated Dutch families. Am J Med Genet A 132A(3):288–295

    CAS  PubMed  Google Scholar 

  • Marescau B, Deshmukh DR, Kockx M et al (1992) Guanidino compounds in serum, urine, liver, kidney, and brain of man and some ureotelic animals. Metabolism 41(5):526–532

    CAS  PubMed  Google Scholar 

  • Martinez-Munoz C, Rosenberg EH, Jakobs C, Salomons GS (2008) Identification, characterization and cloning of SLC6A8C, a novel splice variant of the creatine transporter gene. Gene 418(1–2):53–59

    CAS  PubMed  Google Scholar 

  • McGuire DM, Gross MD, Van Pilsum JF et al (1984) Repression of rat kidney L-arginine:glycine amidinotransferase synthesis by creatine at a pretranslational level. J Biol Chem 259(19):12034–12038

    CAS  PubMed  Google Scholar 

  • Mencarelli MA, Tassini M, Pollazzon M et al (2011) Creatine transporter defect diagnosed by proton NMR spectroscopy in males with intellectual disability. Am J Med Genet A 155A(10):2446–2452

    PubMed  Google Scholar 

  • Mercimek-Mahmutoglu S, Muehl A, Salomons G et al (2006) GAMT deficiency: features, treatment, and outcome in an inborn error of creatine synthesis. Neurology 67(3):480–484

    CAS  PubMed  Google Scholar 

  • Mercimek-Mahmutoglu S et al (2009) Screening for X-linked creatine transporter (SLC6A8) deficiency via simultaneous determination of urinary creatine to creatinine ratio by tandem mass-spectrometry. Mol Genet Metab 101:409–12

    Google Scholar 

  • Mercimek-Mahmutoglu S, Connolly M, Poskitt K et al (2010) Treatment of intractable epilepsy in a female with SLC6A8 deficiency. Mol Genet Metab 101(4):409–412

    CAS  PubMed  Google Scholar 

  • Mercimek-Mahmutoglu S, Al-Thihli K, Roland E (2012) Is low serum creatine kinase a nonspecific screening marker for creatine deficiency syndromes? Mol Genet Metab 106(2):251–252

    CAS  PubMed  Google Scholar 

  • Mercimek-Mahmutoglu S, Ndika J, Kanhai W et al (2014) Thirteen new patients with guanidinoacetate methyltransferase deficiency and functional characterization of nineteen novel missense variants in the GAMT gene. Hum Mutat 35(4):462–469

    CAS  PubMed  Google Scholar 

  • Möller A, Hamprecht B (1989) Creatine transport in cultured cells of rat and mouse brain. J Neurochem 52(2):544–550

    PubMed  Google Scholar 

  • Morris AAM, Appleton RE, Power B et al (2007) Guanidinoacetate methyltransferase deficiency masquerading as a mitochondrial encephalopathy. J Inherit Metab Dis 30(1):100

    CAS  PubMed  Google Scholar 

  • Moxon-Lester L, Takamoto K, Colditz PB et al (2009) S-adenosyl-L-methionine restores photoreceptor function following acute retinal ischemia. Vis Neurosci 26(5–6):429–441

    PubMed  Google Scholar 

  • Nabuurs CI, Choe CU, Veltien A et al (2013) Disturbed energy metabolism and muscular dystrophy caused by pure creatine deficiency are reversible by creatine intake. J Physiol 591(Pt 2):571–592

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nakashima T, Tomi M, Tachikawa M et al (2005) Evidence for creatine biosynthesis in Muller glia. Glia 52(1):47–52

    PubMed  Google Scholar 

  • Nash SR, Giros B, Kingsmore SF et al (1994) Cloning, pharmacological characterization, and genomic localization of the human creatine transporter. Receptors Channels 2(2):165–174

    CAS  PubMed  Google Scholar 

  • Nasrallah F, Feki M, Briand G, Kaabachi N (2010) GC/MS determination of guanidinoacetate and creatine in urine: A routine method for creatine deficiency syndrome diagnosis. Clin Biochem 43(16–17):1356–1361

    CAS  PubMed  Google Scholar 

  • Nasrallah F, Kraoua I, Joncquel-Chevalier Curt M et al (2012) Guanidinoacetate methyltransferase (GAMT) deficiency in two Tunisian siblings: clinical and biochemical features. Clin Lab 58(5–6):427–432

    CAS  PubMed  Google Scholar 

  • Ndika JDT, Johnston K, Barkovich JA et al (2012) Developmental progress and creatine restoration upon long-term creatine supplementation of a patient with arginine:glycine amidinotransferase deficiency. Mol Genet Metab 106(1):48–54

    CAS  PubMed  Google Scholar 

  • Ndika J, Lusink V, Beaubrun C et al (2013) Cloning and characterization of the promoter regions from the parent and paralogous creatine transporter genes. Gene 12(23):3681–8

    Google Scholar 

  • Ndika JDT, Martinez-Munoz C, Anand N et al (2014) Post-transcriptional regulation of the creatine transporter gene: functional relevance of alternative splicing. Biochim Biophys Acta doi:10.1016/j.bbagen.2014.02.012

  • Newmeyer A, Cecil KM, Schapiro M, Clark JF, Degrauw TJ (2005) Incidence of brain creatine transporter deficiency in males with developmental delay referred for brain magnetic resonance imaging. J Dev Behav Pediatr 26(4):276–282

    PubMed  Google Scholar 

  • Newmeyer A, de Grauw T, Clark J, Chuck G, Salomons G (2007) Screening of male patients with autism spectrum disorder for creatine transporter deficiency. Neuropediatrics 38(6):310–312

    CAS  PubMed  Google Scholar 

  • Nouioua S, Cheillan D, Zaouidi S et al (2013) Creatine deficiency syndrome. A treatable myopathy due to arginine-glycine amidinotransferase (AGAT) deficiency. Neuromuscul Disord doi:10.1016/j.nmd.2013.04.011

  • Odoom JE, Kemp GJ, Radda GK (1996) The regulation of total creatine content in a myoblast cell line. Mol Cell Biochem 158(2):179–188

    CAS  PubMed  Google Scholar 

  • Ohtsuki S, Tachikawa M, Takanaga H et al (2002) The blood–brain barrier creatine transporter is a major pathway for supplying creatine to the brain. J Cereb Blood Flow Metab 22(11):1327–1335

    CAS  PubMed  Google Scholar 

  • Omerovic E, Bollano E, Lorentzon M, Walser M, Mattsson-Hulten L, Isgaard J (2003) Growth hormone induces myocardial expression of creatine transporter and decreases plasma levels of IL-1beta in rats during early postinfarct cardiac remodeling. Growth Horm IGF Res 13(5):239–245

    CAS  PubMed  Google Scholar 

  • O'Rourke DJ, Ryan S, Salomons G et al (2009) Guanidinoacetate methyltransferase (GAMT) deficiency: late onset of movement disorder and preserved expressive language. Dev Med Child Neurol 51(5):404–407

    PubMed  Google Scholar 

  • Orsenigo MN, Faelli A, De Biasi S et al (2005) Jejunal creatine absorption: what is the role of the basolateral membrane? J Membr Biol 207(3):183–195

    CAS  PubMed  Google Scholar 

  • Osaka H, Takagi A, Tsuyusaki Y et al (2012) Contiguous deletion of SLC6A8 and BAP31 in a patient with severe dystonia and sensorineural deafness. Mol Genet Metab 106(1):43–47

    CAS  PubMed  Google Scholar 

  • Peral MJ, Garcia-Delgado M, Calonge ML et al (2002) Human, rat and chicken small intestinal Na + − Cl- -creatine transporter: functional, molecular characterization and localization. J Physiol 545(Pt 1):133–144

    CAS  PubMed Central  PubMed  Google Scholar 

  • Peral MJ, Galvez M, Soria ML, Ilundain AA (2005) Developmental decrease in rat small intestinal creatine uptake. Mech Ageing Dev 126(4):523–530

    CAS  PubMed  Google Scholar 

  • Peral MJ, Vazquez-Carretero MD, Ilundain AA (2010) Na(+)/Cl(−)/creatine transporter activity and expression in rat brain synaptosomes. Neuroscience 165(1):53–60

    CAS  PubMed  Google Scholar 

  • Perasso L, Cupello A, Lunardi GL, Principato C, Gandolfo C, Balestrino M (2003) Kinetics of creatine in blood and brain after intraperitoneal injection in the rat. Brain Res 974(1–2):37–42

    CAS  PubMed  Google Scholar 

  • Perasso L, Adriano E, Ruggeri P et al (2009) In vivo neuroprotection by a creatine-derived compound: phosphocreatine-Mg-complex acetate. Brain Res 1285:158–163

    CAS  PubMed  Google Scholar 

  • Poo-Arguelles P, Arias A, Vilaseca MA et al (2006) X-Linked creatine transporter deficiency in two patients with severe mental retardation and autism. J Inherit Metab Dis 29(1):220–223

    CAS  PubMed  Google Scholar 

  • Pouwels PJ, Brockmann K, Kruse B et al (1999) Regional age dependence of human brain metabolites from infancy to adulthood as detected by quantitative localized proton MRS. Pediatr Res 46(4):474–485

    CAS  PubMed  Google Scholar 

  • Puusepp H, Kall K, Salomons G et al (2009) The screening of SLC6A8 deficiency among Estonian families with X-linked mental retardation. J Inherit Metab Dis 33 Suppl 3:S5-11

  • Pyne-Geithman GJ, Degrauw TJ, Cecil KM et al (2004) Presence of normal creatine in the muscle of a patient with a mutation in the creatine transporter: a case study. Mol Cell Biochem 262(1–2):35–39

    CAS  PubMed  Google Scholar 

  • Queiroz MS, Shao Y, Berkich DA, Lanoue KF, Ismail-Beigi F (2002) Thyroid hormone regulation of cardiac bioenergetics: role of intracellular creatine. Am J Physiol Heart Circ Physiol 283(6):H2527–H2533

    CAS  PubMed  Google Scholar 

  • Renema WKJ, Schmidt A, van Asten JJA et al (2003) MR spectroscopy of muscle and brain in guanidinoacetate methyltransferase (GAMT)-deficient mice: validation of an animal model to study creatine deficiency. Magn Reson Med 50(5):936–943

    CAS  PubMed  Google Scholar 

  • Rosenberg EH, Almeida LS, Kleefstra T et al (2004) High prevalence of SLC6A8 deficiency in X-linked mental retardation. Am J Hum Genet 75(1):97–105

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rosenberg EH, Martinez Munoz C, Betsalel OT et al (2007) Functional characterization of missense variants in the creatine transporter gene (SLC6A8): improved diagnostic application. Hum Mutat 28(9):890–896

    CAS  PubMed  Google Scholar 

  • Salomons GS, van Dooren SJ, Verhoeven NM et al (2001) X-linked creatine-transporter gene (SLC6A8) defect: a new creatine-deficiency syndrome. Am J Hum Genet 68(6):1497–1500

    CAS  PubMed Central  PubMed  Google Scholar 

  • Salomons GS, van Dooren SJM, Verhoeven NM et al (2003) X-linked creatine transporter defect: an overview. J Inherit Metab Dis 26(2–3):309–318

    CAS  PubMed  Google Scholar 

  • Saltarelli MD, Bauman AL, Moore KR et al (1996) Expression of the rat brain creatine transporter in situ and in transfected HeLa cells. Dev Neurosci 18(5–6):524–534

    CAS  PubMed  Google Scholar 

  • Schiaffino MC, Bellini C, Costabello L et al (2005) X-linked creatine transporter deficiency: clinical description of a patient with a novel SLC6A8 gene mutation. Neurogenetics 6(3):165–168

    PubMed  Google Scholar 

  • Schloss P, Mayser W, Betz H (1994) The putative rat choline transporter CHOT1 transports creatine and is highly expressed in neural and muscle-rich tissues. Biochem Biophys Res Commun 198(2):637–645

    CAS  PubMed  Google Scholar 

  • Schmidt A, Marescau B, Boehm EA et al (2004) Severely altered guanidino compound levels, disturbed body weight homeostasis and impaired fertility in a mouse model of guanidinoacetate N-methyltransferase (GAMT) deficiency. Hum Mol Genet 13(9):905–921

    CAS  PubMed  Google Scholar 

  • Schulze A, Hess T, Wevers R et al (1997) Creatine deficiency syndrome caused by guanidinoacetate methyltransferase deficiency: diagnostic tools for a new inborn error of metabolism. J Pediatr 131(4):626–631

    CAS  PubMed  Google Scholar 

  • Schulze A, Bachert P, Schlemmer H et al (2003) Lack of creatine in muscle and brain in an adult with GAMT deficiency. Ann Neurol 53(2):248–251

    CAS  PubMed  Google Scholar 

  • Schulze A, Hoffmann GF, Bachert P et al (2006) Presymptomatic treatment of neonatal guanidinoacetate methyltransferase deficiency. Neurology 67(4):719–721

    CAS  PubMed  Google Scholar 

  • Shojaiefard M, Christie DL, Lang F (2005) Stimulation of the creatine transporter SLC6A8 by the protein kinases SGK1 and SGK3. Biochem Biophys Res Commun 334(3):742–746

    CAS  PubMed  Google Scholar 

  • Shojaiefard M, Christie DL, Lang F (2006) Stimulation of the creatine transporter SLC6A8 by the protein kinase mTOR. Biochem Biophys Res Commun 341(4):945–949

    CAS  PubMed  Google Scholar 

  • Shojaiefard M, Hosseinzadeh Z, Bhavsar SK, Lang F (2012) Downregulation of the creatine transporter SLC6A8 by JAK2. J Membr Biol 245(3):157–163

    CAS  PubMed  Google Scholar 

  • Sijens PE, Verbruggen KT, Oudkerk M et al (2005) 1H MR spectroscopy of the brain in Cr transporter defect. Mol Genet Metab 86(3):421–422

    CAS  PubMed  Google Scholar 

  • Sitte HH, Farhan H, Javitch JA (2004) Sodium-dependent neurotransmitter transporters: oligomerization as a determinant of transporter function and trafficking. Mol Interv 4(1):38–47

    CAS  PubMed  Google Scholar 

  • Skelton MR, Schaefer TL, Graham DL et al (2011) Creatine transporter (CrT; Slc6a8) knockout mice as a model of human CrT deficiency. PLoS ONE 6(1):e16187

    CAS  PubMed Central  PubMed  Google Scholar 

  • Snow RJ (2013) AGAT knockout mice provide an opportunity to titrate tissue creatine content. J Physiol 591(Pt 2):393

    CAS  PubMed Central  PubMed  Google Scholar 

  • Snow RJ, Murphy RM (2001) Creatine and the creatine transporter: a review. Mol Cell Biochem 224(1–2):169–181

    CAS  PubMed  Google Scholar 

  • Sora I, Richman J, Santoro G et al (1994) The cloning and expression of a human creatine transporter. Biochem Biophys Res Commun 204(1):419–427

    CAS  PubMed  Google Scholar 

  • Speer O, Neukomm LJ, Murphy RM et al (2004) Creatine transporters: a reappraisal. Mol Cell Biochem 256–257(1–2):407–424

    PubMed  Google Scholar 

  • Stead LM, Au KP, Jacobs RL, Brosnan ME, Brosnan JT (2001) Methylation demand and homocysteine metabolism: effects of dietary provision of creatine and guanidinoacetate. Am J Physiol Endocrinol Metab 281(5):E1095–E1100

    CAS  PubMed  Google Scholar 

  • Stead LM, Brosnan JT, Brosnan ME, Vance DE, Jacobs RL (2006) Is it time to reevaluate methyl balance in humans? Am J Clin Nutr 83(1):5–10

    CAS  PubMed  Google Scholar 

  • Steenge GR, Lambourne J, Casey A, Macdonald IA, Greenhaff PL (1998) Stimulatory effect of insulin on creatine accumulation in human skeletal muscle. Am J Physiol 275(6 Pt 1):E974–E979

    CAS  PubMed  Google Scholar 

  • Stockler S, Holzbach U, Hanefeld F et al (1994) Creatine deficiency in the brain: a new, treatable inborn error of metabolism. Pediatr Res 36(3):409–413

    CAS  PubMed  Google Scholar 

  • Stockler S, Hanefeld F, Frahm J (1996) Creatine replacement therapy in guanidinoacetate methyltransferase deficiency, a novel inborn error of metabolism. Lancet 348(9030):789–790

    CAS  PubMed  Google Scholar 

  • Stockler-Ipsiroglu S, van Karnebeek C, Longo N et al (2014) Guanidinoacetate methyltransferase (GAMT) deficiency: outcomes in 48 individuals and recommendations for diagnosis, treatment and monitoring. Mol Genet Metab 111(1):16–25

    CAS  PubMed  Google Scholar 

  • Stromberger C, Bodamer OA, Stockler-Ipsiroglu S (2003) Clinical characteristics and diagnostic clues in inborn errors of creatine metabolism. J Inherit Metab Dis 26(2–3):299–308

    CAS  PubMed  Google Scholar 

  • Strutz-Seebohm N, Shojaiefard M, Christie D et al (2007) PIKfyve in the SGK1 mediated regulation of the creatine transporter SLC6A8. Cell Physiol Biochem 20(6):729–734

    CAS  PubMed  Google Scholar 

  • Tachikawa M, Hosoya KI (2011) Transport characteristics of guanidino compounds at the blood–brain barrier and blood-cerebrospinal fluid barrier: relevance to neural disorders. Fluids Barriers CNS 8(1):13

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tachikawa M, Fukaya M, Terasaki T, Ohtsuki S, Watanabe M (2004) Distinct cellular expressions of creatine synthetic enzyme GAMT and creatine kinases uCK-Mi and CK-B suggest a novel neuron-glial relationship for brain energy homeostasis. Eur J Neurosci 20(1):144–160

    PubMed  Google Scholar 

  • Tachikawa M, Hosoya KI, Ohtsuki S, Terasaki T (2007) A novel relationship between creatine transport at the blood–brain and blood-retinal barriers, creatine biosynthesis, and its use for brain and retinal energy homeostasis. Subcell Biochem 46:83–98

    PubMed  Google Scholar 

  • Tachikawa M, Kasai Y, Yokoyama R (2009) The blood–brain barrier transport and cerebral distribution of guanidinoacetate in rats: involvement of creatine and taurine transporters. J Neurochem 111(2):499–509

    CAS  PubMed  Google Scholar 

  • Taegtmeyer H, Ingwall JS (2013) Creatine–a dispensable metabolite? Circ Res 112(6):878–880

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tarnopolsky M, Parise G, Fu MH (2003) Acute and moderate-term creatine monohydrate supplementation does not affect creatine transporter mRNA or protein content in either young or elderly humans. Mol Cell Biochem 244(1–2):159–166

    CAS  PubMed  Google Scholar 

  • Torremans A, Marescau B, Possemiers I (2005) Biochemical and behavioural phenotyping of a mouse model for GAMT deficiency. J Neurol Sci 231(1–2):49–55

    CAS  PubMed  Google Scholar 

  • Torres GE, Gainetdinov RR, Caron MG (2003) Plasma membrane monoamine transporters: structure, regulation and function. Nat Rev Neurosci 4(1):13–25

    CAS  PubMed  Google Scholar 

  • Tosco M, Faelli A, Sironi C, Gastaldi G, Orsenigo MN (2004) A creatine transporter is operative at the brush border level of the rat jejunal enterocyte. J Membr Biol 202(2):85–95

    CAS  PubMed  Google Scholar 

  • Trotier-Faurion A, Dezard S, Taran F et al (2013) Synthesis and biological evaluation of new creatine Fatty esters revealed dodecyl creatine ester as a promising drug candidate for the treatment of the creatine transporter deficiency. J Med Chem 56(12):5173–5181

    CAS  PubMed  Google Scholar 

  • Valayannopoulos V, Boddaert N, Chabli A et al (2012) Treatment by oral creatine, L-arginine and L-glycine in six severely affected patients with creatine transporter defect. J Inherit Metab Dis 35(1):151–157

    CAS  PubMed  Google Scholar 

  • Valayannopoulos V, Bakouh N, Mazzuca M et al (2013) Functional and electrophysiological characterization of four non-truncating mutations responsible for creatine transporter (SLC6A8) deficiency syndrome. J Inherit Metab Dis 36(1):103–112

    CAS  PubMed  Google Scholar 

  • Valongo C, Cardoso ML, Domingues P et al (2004) Age related reference values for urine creatine and guanidinoacetic acid concentration in children and adolescents by gas chromatography–mass spectrometry. Clin Chim Acta 348(1–2):155–161

    CAS  PubMed  Google Scholar 

  • van de Kamp JM, Mancini GMS, Pouwels PJW et al (2011) Clinical features and X-inactivation in females heterozygous for creatine transporter defect. Clin Genet 79(3):264–272

    PubMed  Google Scholar 

  • van de Kamp JM, Pouwels PJW, Aarsen FK (2012) Long-term follow-up and treatment in nine boys with X-linked creatine transporter defect. J Inherit Metab Dis 35(1):141–149

    PubMed Central  PubMed  Google Scholar 

  • van de Kamp JM, Betsalel OT, Mercimek-Mahmutoglu S et al (2013a) Phenotype and genotype in 101 males with X-linked creatine transporter deficiency. J Med Genet 50(7):463–472

    PubMed  Google Scholar 

  • van de Kamp JM, Jakobs C, Gibson KM, Salomons GS (2013b) New insights into creatine transporter deficiency: the importance of recycling creatine in the brain. J Inherit Metab Dis 36(1):155–156

    PubMed  Google Scholar 

  • van de Kamp JM, Errami A, Howidi M et al (2014) Genotype–phenotype correlation of contiguous gene deletions of SLC6A8,BCAP31 and ABCD1. Clin Genet doi:10.1111/cge.12355

  • van der Knaap MS, Verhoeven NM, Maaswinkel-Mooij P et al (2000) Mental retardation and behavioral problems as presenting signs of a creatine synthesis defect. Ann Neurol 47(4):540–543

    PubMed  Google Scholar 

  • Van Pilsum JF, Olsen B, Taylor D, Rozycki T, Pierce JC et al (1963) Transamidinase activities, in vitro, of tissues from various mammals and from rats fed protein-free, creatine-supplemented and normal diets. Arch Biochem Biophys 100:520–524

    Google Scholar 

  • Van Pilsum JF, Stephens GC, Taylor D (1972) Distribution of creatine, guanidinoacetate and the enzymes for their biosynthesis in the animal kingdom. Implications for phylogeny. Biochem J 126(2):325–345

    PubMed Central  Google Scholar 

  • Verbruggen KT, Knijff WA, Soorani-Lunsing RJ et al (2007a) Global developmental delay in guanidionacetate methyltransferase deficiency: differences in formal testing and clinical observation. Eur J Pediatr 166(9):921–925

    CAS  PubMed  Google Scholar 

  • Verbruggen KT, Sijens PE, Schulze A et al (2007b) Successful treatment of a guanidinoacetate methyltransferase deficient patient: findings with relevance to treatment strategy and pathophysiology. Mol Genet Metab 91(3):294–296

    CAS  PubMed  Google Scholar 

  • Verhoeven NM, Guerand WS, Struys EA, Bouman AA, van der Knaap MS, Jakobs C (2000) Plasma creatinine assessment in creatine deficiency: a diagnostic pitfall. J Inherit Metab Dis 23(8):835–840

    CAS  PubMed  Google Scholar 

  • Verhoeven NM, Salomons GS, Jakobs C (2005) Laboratory diagnosis of defects of creatine biosynthesis and transport. Clin Chim Acta 361(1–2):1–9

    CAS  PubMed  Google Scholar 

  • Verma A (2010) Arginine:glycine amidinotransferase deficiency: a treatable metabolic encephalomyopathy. Neurology 75(2):186–188

    PubMed  Google Scholar 

  • Villar C, Campistol J, Fons C et al (2012) Glycine and L-arginine treatment causes hyperhomocysteinemia in cerebral creatine transporter deficiency patients. JIMD Rep 4:13–16

    PubMed Central  PubMed  Google Scholar 

  • Vodopiutz J, Item CB, Hausler M, Korall H, Bodamer OA (2007) Severe speech delay as the presenting symptom of guanidinoacetate methyltransferase deficiency. J Child Neurol 22(6):773–774

    CAS  PubMed  Google Scholar 

  • Walker JB (1979) Creatine: biosynthesis, regulation, and function. Adv Enzymol Relat Areas Mol Biol 50:177–242

    CAS  PubMed  Google Scholar 

  • Wallimann T, Tokarska-Schlattner M, Schlattner U (2011) The creatine kinase system and pleiotropic effects of creatine. Amino Acids 40(5):1271–1296

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wallis J, Lygate CA, Fischer A et al (2005) Supranormal myocardial creatine and phosphocreatine concentrations lead to cardiac hypertrophy and heart failure: insights from creatine transporter-overexpressing transgenic mice. Circulation 112(20):3131–3139

    CAS  PubMed  Google Scholar 

  • Wyss M, Kaddurah-Daouk R (2000) Creatine and creatinine metabolism. Physiol Rev 80(3):1107–1213

    CAS  PubMed  Google Scholar 

  • Yamashita A, Singh SK, Kawate T, Jin Y, Gouaux E et al (2005) Crystal structure of a bacterial homologue of Na+/Cl–dependent neurotransmitter transporters. Nature 437(7056):215–223

    CAS  PubMed  Google Scholar 

  • Zuercher J, Neidhardt J, Magyar I et al (2010) Alterations of the 5’untranslated region of SLC16A12 lead to age-related cataract. Invest Ophthalmol Vis Sci 51(7):3354–3361

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ofir T Betsalel for providing Fig. 2.

Compliance with Ethics Guidelines

Conflict of Interest

None.

Informed consent/animal rights

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiddeke M. van de Kamp.

Additional information

Communicated by: Carlo Dionisi-Vici

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van de Kamp, J.M., Mancini, G.M. & Salomons, G.S. X-linked creatine transporter deficiency: clinical aspects and pathophysiology. J Inherit Metab Dis 37, 715–733 (2014). https://doi.org/10.1007/s10545-014-9713-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-014-9713-8

Keywords

Navigation