Skip to main content
Log in

Cell surface associated glycohydrolases in normal and Gaucher disease fibroblasts

  • Original Article
  • Published:
Journal of Inherited Metabolic Disease

Abstract

Gaucher disease (GD) is the most common lysosomal disorder and is caused by an inherited autosomal recessive deficiency in β-glucocerebrosidase. This enzyme, like other glycohydrolases involved in glycosphingolipid (GSL) metabolism, is present in both plasma membrane (PM) and intracellular fractions. We analyzed the activities of CBE-sensitive β-glucosidase (GBA1) and AMP-DNM-sensitive β-glucosidase (GBA2) in total cell lysates and PM of human fibroblast cell lines from control (normal) subjects and from patients with GD clinical types 1, 2, and 3. GBA1 activities in both total lysate and PM of GD fibroblasts were low, and their relative percentages were similar to those of control cells. In contrast, GBA2 activities were higher in GD cells than in control cells, and the degree of increase differed among the three GD types. The increase of GBA2 enzyme activity was correlated with increased expression of GBA2 protein as evaluated by QRT-PCR. Activities of β-galactosidase and β-hexosaminidase in PM were significantly higher for GD cells than for control cells and also showed significant differences among the three GD types, suggesting the occurrence of cross-talk among the enzymes involved in GSL metabolism. Our findings indicate that the profiles of glycohydrolase activities in PM may provide a valuable tool to refine the classification of GD into distinct clinical types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aureli M, Masilamani AP, Illuzzi G et al (2009) Activity of plasma membrane beta-galactosidase and beta-glucosidase. FEBS Lett 583:2469–2473

    Article  PubMed  CAS  Google Scholar 

  • Aureli M, Loberto N, Chigorno V, Prinetti A, Sonnino S (2011a) Remodeling of sphingolipids by plasma membrane associated enzymes. Neurochem Res 36:1636–1644

    Article  PubMed  CAS  Google Scholar 

  • Aureli M, Loberto N, Lanteri P, Chigorno V, Prinetti A, Sonnino S (2011b) Cell surface sphingolipid glycohydrolases in neuronal differentiation and aging in culture. J Neurochem 116:891–899

    Article  PubMed  CAS  Google Scholar 

  • Balwani M, Grace ME, Desnick RJ (2011) Gaucher disease: when molecular testing and clinical presentation disagree -the novel c.1226A>G(p.N370S)–RecNcil allele. J Inherit Metab Dis 34:789–793

    Article  PubMed  Google Scholar 

  • Beutler E, Grabowski GA (2001) Gaucher disease. In: Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease. McGraw-Hill, New York, pp 3635–3668

    Google Scholar 

  • Boot RG, Verhoek M, Donker-Koopman W et al (2007) Identification of the non-lysosomal glucosylceramidase as beta-glucosidase 2. J Biol Chem 282:1305–1312

    Article  PubMed  CAS  Google Scholar 

  • Crespo PM, Demichelis VT, Daniotti JL (2010) Neobiosynthesis of glycosphingolipids by plasma membrane-associated glycosyltransferases. J Biol Chem 285:29179–29190

    Article  PubMed  CAS  Google Scholar 

  • de Fost M, Aerts JM, Hollak CE (2003) Gaucher disease: from fundamental research to effective therapeutic interventions. Neth J Med 61:3–8

    PubMed  Google Scholar 

  • Dekker N, Voorn-Brouwer T, Verhoek M et al (2011) The cytosolic beta-glucosidase GBA3 does not influence type 1 Gaucher disease manifestation. Blood Cells Mol Dis 46:19–26

    Article  PubMed  CAS  Google Scholar 

  • Filocamo M, Mazzotti R, Stroppiano M et al (2002) Analysis of the glucocerebrosidase gene and mutation profile in 144 Italian gaucher patients. Hum Mutat 20:234–235

    Article  PubMed  Google Scholar 

  • Filocamo M, Mazzotti R, Stroppiano M et al (2004) Early visual seizures and progressive myoclonus epilepsy in neuronopathic Gaucher disease due to a rare compound heterozygosity (N188S/S107L). Epilepsia 45:1154–1157

    Google Scholar 

  • Filocamo M, Grossi S, Stroppiano M et al (2005) Homozygosity for a non-pseudogene complex glucocerebrosidase allele as cause of an atypical neuronopathic form of Gaucher disease. Am J Med Genet A 134A:95–96

    Article  PubMed  Google Scholar 

  • Fuller M, Lovejoy M, Hopwood JJ, Meikle PJ (2005) Immunoquantification of beta-glucosidase: diagnosis and prediction of severity in Gaucher disease. Clin Chem 51:2200–2202

    Article  PubMed  CAS  Google Scholar 

  • Fuller M, Rozaklis T, Lovejoy M, Zarrinkalam K, Hopwood JJ, Meikle PJ (2008) Glucosylceramide accumulation is not confined to the lysosome in fibroblasts from patients with Gaucher disease. Mol Genet Metab 93:437–443

    Article  PubMed  CAS  Google Scholar 

  • Ghauharali-van der Vlugt K, Langeveld M, Poppema A et al (2008) Prominent increase in plasma ganglioside GM3 is associated with clinical manifestations of type I Gaucher disease. Clin Chim Acta 389:109–113

    Article  PubMed  CAS  Google Scholar 

  • Goker-Alpan O, Hruska KS, Orvisky E et al (2005) Divergent phenotypes in Gaucher disease implicate the role of modifiers. J Med Genet 42:e37

    Article  PubMed  CAS  Google Scholar 

  • Hruska KS, LaMarca ME, Scott CR, Sidransky E (2008) Gaucher disease: mutation and polymorphism spectrum in the glucocerebrosidase gene (GBA). Hum Mutat 29:567–583

    Article  PubMed  CAS  Google Scholar 

  • Huitema K, van den Dikkenberg J, Brouwers JF, Holthuis JC (2004) Identification of a family of animal sphingomyelin synthases. EMBO J 23:33–44

    Article  PubMed  CAS  Google Scholar 

  • Kacher Y, Futerman AH (2006) Genetic diseases of sphingolipid metabolism: pathological mechanisms and therapeutic options. FEBS Lett 580:5510–5517

    Article  PubMed  CAS  Google Scholar 

  • Kawamura S, Sato I, Wada T et al (2011) Plasma membrane-associated sialidase (NEU3) regulates progression of prostate cancer to androgen-independent growth through modulation of androgen receptor signaling. Cell Death Differ 19:170–179

    Article  PubMed  Google Scholar 

  • Kolter T, Sandhoff K (2005) Principles of lysosomal membrane digestion: stimulation of sphingolipid degradation by sphingolipid activator proteins and anionic lysosomal lipids. Annu Rev Cell Dev Biol 21:81–103

    Article  PubMed  CAS  Google Scholar 

  • Lachmann RH, Grant IR, Halsall D, Cox TM (2004) Twin pairs showing discordance of phenotype in adult Gaucher's disease. QJM 97:199–204

    Article  PubMed  CAS  Google Scholar 

  • Ledesma MD, Prinetti A, Sonnino S, Schuchman EH (2011) Brain pathology in Niemann Pick disease type A: insights from the acid sphingomyelinase knockout mice. J Neurochem 116:779–788

    Article  PubMed  CAS  Google Scholar 

  • Levade T, Jaffrezou JP (1999) Signalling sphingomyelinases: which, where, how and why? Biochim Biophys Acta 1438:1–17

    Article  PubMed  CAS  Google Scholar 

  • Maccioni HJ (2007) Glycosylation of glycolipids in the Golgi complex. J Neurochem 103(Suppl 1):81–90

    Article  PubMed  CAS  Google Scholar 

  • Mencarelli S, Cavalieri C, Magini A et al (2005) Identification of plasma membrane associated mature beta-hexosaminidase A, active towards GM2 ganglioside, in human fibroblasts. FEBS Lett 579:5501–5506

    Article  PubMed  CAS  Google Scholar 

  • Monti E, Bassi MT, Papini N et al (2000) Identification and expression of NEU3, a novel human sialidase associated to the plasma membrane. Biochem J 349:343–351

    Article  PubMed  CAS  Google Scholar 

  • Overkleeft HS, Renkema GH, Neele J et al (1998) Generation of specific deoxynojirimycin-type inhibitors of the non-lysosomal glucosylceramidase. J Biol Chem 273:26522–26527

    Article  PubMed  CAS  Google Scholar 

  • Papini N, Anastasia L, Tringali C et al (2004) The plasma membrane-associated sialidase MmNEU3 modifies the ganglioside pattern of adjacent cells supporting its involvement in cell-to-cell interactions. J Biol Chem 279:16989–16995

    Article  PubMed  CAS  Google Scholar 

  • Pastores GM, Hughes DA (2010) Gaucher disease. In: Pagon RA, Bird TD, Dolan CR, Stephens K (eds) GeneReviews. University of Washington, Seattle

    Google Scholar 

  • Preti A, Fiorilli A, Lombardo A, Caimi L, Tettamanti G (1980) Occurrence of sialyltransferase activity in the synaptosomal membranes prepared from calf brain cortex. J Neurochem 35:281–296

    Article  PubMed  CAS  Google Scholar 

  • Reczek D, Schwake M, Schroder J et al (2007) LIMP-2 is a receptor for lysosomal mannose-6-phosphate-independent targeting of beta-glucocerebrosidase. Cell 131:770–783

    Article  PubMed  CAS  Google Scholar 

  • Reddy A, Caler EV, Andrews NW (2001) Plasma membrane repair is mediated by Ca(2+)-regulated exocytosis of lysosomes. Cell 106:157–169

    Article  PubMed  CAS  Google Scholar 

  • Regis S, Grossi S, Lualdi S, Biancheri R, Filocamo M (2005) Diagnosis of Pelizaeus-Merzbacher disease: detection of proteolipid protein gene copy number by real-time PCR. Neurogenetics 6:73–78

    Article  PubMed  CAS  Google Scholar 

  • Romano M, Danek G, Baralle F et al (2000) Functional characterisation of the novel mutation IVS 8 (-11delC)(-14T->A) in the intron 8 of the glucocerebrosidase gene of two Italian siblings with Gaucher disease type I. Blood Cells Mol Dis 26:171–176

    Google Scholar 

  • Sardiello M, Palmieri M, di Ronza A et al (2009) A gene network regulating lysosomal biogenesis and function. Science 325:473–477

    PubMed  CAS  Google Scholar 

  • Scandroglio F, Venkata JK, Loberto N et al (2008) Lipid content of brain, brain membrane lipid domains, and neurons from acid sphingomyelinase deficient mice. J Neurochem 107:329–338

    Article  PubMed  CAS  Google Scholar 

  • Sibille A, Eng CM, Kim SJ, Pastores G, Grabowski GA (1993) Phenotype/genotype correlations in Gaucher disease type I: clinical and therapeutic implications. Am J Hum Genet 52:1094–1101

    PubMed  CAS  Google Scholar 

  • Sillence DJ, Puri V, Marks DL et al (2002) Glucosylceramide modulates membrane traffic along the endocytic pathway. J Lipid Res 43:1837–1845

    Article  PubMed  CAS  Google Scholar 

  • Slife CW, Wang E, Hunter R et al (1989) Free sphingosine formation from endogenous substrates by a liver plasma membrane system with a divalent cation dependence and a neutral pH optimum. J Biol Chem 264:10371–10377

    PubMed  CAS  Google Scholar 

  • Sonnino S, Prinetti A, Mauri L, Chigorno V, Tettamanti G (2006) Dynamic and structural properties of sphingolipids as driving forces for the formation of membrane domains. Chem Rev 106:2111–2125

    Article  PubMed  CAS  Google Scholar 

  • Sonnino S, Mauri L, Chigorno V, Prinetti A (2007) Gangliosides as components of lipid membrane domains. Glycobiology 17:1R–13R

    Article  PubMed  CAS  Google Scholar 

  • Sonnino S, Aureli M, Loberto N, Chigorno V, Prinetti A (2010) Fine tuning of cell functions through remodeling of glycosphingolipids by plasma membrane-associated glycohydrolases. FEBS Lett 584:1914–1922

    Article  PubMed  CAS  Google Scholar 

  • Stenson PD, Mort M, Ball EV et al (2009) The human gene mutation database: 2008 update. Genome Med 1:13

    Article  PubMed  Google Scholar 

  • Tani M, Ito M, Igarashi Y (2007) Ceramide/sphingosine/sphingosine 1-phosphate metabolism on the cell surface and in the extracellular space. Cell Signal 19:229–237

    Article  PubMed  CAS  Google Scholar 

  • Theophilus B, Latham T, Grabowski GA, Smith FI (1989) Gaucher disease: molecular heterogeneity and phenotype-genotype correlations. Am J Hum Genet 45:212–225

    PubMed  CAS  Google Scholar 

  • Valaperta R, Chigorno V, Basso L et al (2006) Plasma membrane production of ceramide from ganglioside GM3 in human fibroblasts. FASEB J 20:1227–1229

    Article  PubMed  CAS  Google Scholar 

  • Valaperta R, Valsecchi M, Rocchetta F et al (2007) Induction of axonal differentiation by silencing plasma membrane-associated sialidase Neu3 in neuroblastoma cells. J Neurochem 100:708–719

    Article  PubMed  CAS  Google Scholar 

  • van Weely S, Brandsma M, Strijland A, Tager JM, Aerts JM (1993) Demonstration of the existence of a second, non-lysosomal glucocerebrosidase that is not deficient in Gaucher disease. Biochim Biophys Acta 1181:55–62

    Article  PubMed  Google Scholar 

  • Vitner EB, Platt FM, Futerman AH (2010) Common and uncommon pathogenic cascades in lysosomal storage diseases. J Biol Chem 285:20423–20427

    Article  PubMed  CAS  Google Scholar 

  • Wennekes T, van den Berg RJ, Boot RG, van der Marel GA, Overkleeft HS, Aerts JM (2009) Glycosphingolipids–nature, function, and pharmacological modulation. Angew Chem Int Ed Engl 48:8848–8869

    Article  PubMed  CAS  Google Scholar 

  • Yonezawa N, Amari S, Takahashi K et al (2005) Participation of the nonreducing terminal beta-galactosyl residues of the neutral N-linked carbohydrate chains of porcine zona pellucida glycoproteins in sperm-egg binding. Mol Reprod Dev 70:222–227

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grant PRIN (Italy) to S.S. and by grant “Ricerca Corrente” from the Italian Ministry of Health to M.F. The samples were obtained from the “Cell Line and DNA Biobank from Patients affected by Genetic Disease” (G. Gaslini Institute) - Telethon Genetic Biobank Network (Project No. GTB07001).

Details of funding for all research studies

This work was supported by grant PRIN (Italy) to SS and by grant “Ricerca Corrente” from the Italian Ministry of Health to MF.

The authors confirm their independence from the sponsors; the content of the article has not been influenced by the sponsors.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandro Sonnino.

Additional information

Communicated by: Douglas A. Brooks

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aureli, M., Bassi, R., Loberto, N. et al. Cell surface associated glycohydrolases in normal and Gaucher disease fibroblasts. J Inherit Metab Dis 35, 1081–1091 (2012). https://doi.org/10.1007/s10545-012-9478-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-012-9478-x

Keywords

Navigation