Skip to main content
Log in

Microfluidic device flow field characterization around tumor spheroids with tunable necrosis produced in an optimized off-chip process

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Tumor spheroids are a 3-D tumor model that holds promise for testing cancer therapies in vitro using microfluidic devices. Tailoring the properties of a tumor spheroid is critical for evaluating therapies over a broad range of possible indications. Using human colon cancer cells (HCT-116), we demonstrate controlled tumor spheroid growth rates by varying the number of cells initially seeded into microwell chambers. The presence of a necrotic core in the spheroids could be controlled by changing the glucose concentration of the incubation medium. This manipulation had no effect on the size of the tumor spheroids or hypoxia in the spheroid core, which has been predicted by a mathematical model in computer simulations of spheroid growth. Control over the presence of a necrotic core while maintaining other physical parameters of the spheroid presents an opportunity to assess the impact of core necrosis on therapy efficacy. Using micro-particle imaging velocimetry (micro-PIV), we characterize the hydrodynamics and mass transport of nanoparticles in tumor spheroids in a microfluidic device. We observe a geometrical dependence on the flow rate experienced by the tumor spheroid in the device, such that the “front” of the spheroid experiences a higher flow velocity than the “back” of the spheroid. Using fluorescent nanoparticles, we demonstrate a heterogeneous accumulation of nanoparticles at the tumor interface that correlates with the observed flow velocities. The penetration depth of these nanoparticles into the tumor spheroid depends on nanoparticle diameter, consistent with reports in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • T.-M. Achilli, J. Meyer, J.R. Morgan, Expert. Opin. Biol. Ther. 12, 1347 (2012)

    Article  Google Scholar 

  • K. Aguilera, R. Brekken, BIO-Protoc. 4 (2014)

  • A. Albanese, P.S. Tang, W.C.W. Chan, Annu. Rev. Biomed. Eng. 14, 1 (2012)

    Article  Google Scholar 

  • A. Albanese, A.K. Lam, E.A. Sykes, J.V. Rocheleau, W.C.W. Chan, Nat. Commun. 4, 2718 (2013)

    Article  Google Scholar 

  • K. Alessandri, B.R. Sarangi, V.V. Gurchenkov, B. Sinha, T.R. Kießling, L. Fetler, F. Rico, S. Scheuring, C. Lamaze, A. Simon, S. Geraldo, D. Vignjević, H. Doméjean, L. Rolland, A. Funfak, J. Bibette, N. Bremond, P. Nassoy, Proc. Natl. Acad. Sci. 110, 14843 (2013)

    Article  Google Scholar 

  • D. Ambrosi, F. Mollica, Int. J. Eng. Sci. 40, 1297 (2002)

    Article  Google Scholar 

  • J.M. Brown, Methods Enzymol. 435, 297 (2007)

    Google Scholar 

  • H. Cabral, Y. Matsumoto, K. Mizuno, Q. Chen, M. Murakami, M. Kimura, Y. Terada, M.R. Kano, K. Miyazono, M. Uesaka, N. Nishiyama, K. Kataoka, Nat. Nanotechnol. 6, 815 (2011)

    Article  Google Scholar 

  • E.C. Costa, A.F. Moreira, D. de Melo-Diogo, V.M. Gaspar, M.P. Carvalho, I.J. Correia, Biotechnol. Adv. 34, 1427 (2016)

    Article  Google Scholar 

  • S. Dimmeler, J. Haendeler, V. Rippmann, M. Nehls, A.M. Zeiher, FEBS Lett. 399, 71 (2015)

    Article  Google Scholar 

  • D. Drasdo, S. Höhme, Phys. Biol. 2, 133 (2005)

    Article  Google Scholar 

  • D. Drasdo, S. Hoehme, M. Block, J. Stat. Phys. 128, 287 (2007)

    Article  MathSciNet  Google Scholar 

  • M. Drewitz, M. Helbling, N. Fried, M. Bieri, W. Moritz, J. Lichtenberg, J.M. Kelm, Biotechnol. J. 6, 1488 (2011)

    Article  Google Scholar 

  • N.T. Elliott, F. Yuan, J. Pharm. Sci. 100, 59 (2011)

    Article  Google Scholar 

  • J.P. Freyer, R.M. Sutherland, J. Cell. Physiol. 124, 516 (1985)

    Article  Google Scholar 

  • J.P. Freyer, R.M. Sutherland, Cancer Res. 46, 3504 (1986)

    Google Scholar 

  • J. Friedrich, C. Seidel, R. Ebner, L.A. Kunz-Schughart, Nat. Protoc. 4, 309 (2009)

    Article  Google Scholar 

  • K. Froehlich, J.-D. Haeger, J. Heger, J. Pastuschek, S. M. Photini, Y. Yan, A. Lupp, C. Pfarrer, R. Mrowka, E. Schleußner, U. R. Markert, and A. Schmidt, J. Mammary Gland Biol. Neoplasia 1 (2016).

  • C.-Y. Fu, S.-Y. Tseng, S.-M. Yang, L. Hsu, C.-H. Liu, H.-Y. Chang, Biofabrication 6, 015009 (2014)

    Article  Google Scholar 

  • F. Hirschhaeuser, H. Menne, C. Dittfeld, J. West, W. Mueller-Klieser, L.A. Kunz-Schughart, J. Biotechnol. 148, 3 (2010)

    Article  Google Scholar 

  • K. Huang, H. Ma, J. Liu, S. Huo, A. Kumar, T. Wei, X. Zhang, S. Jin, Y. Gan, P.C. Wang, S. He, X. Zhang, X.-J. Liang, ACS Nano 6, 4483 (2012)

    Article  Google Scholar 

  • S. Huo, H. Ma, K. Huang, J. Liu, T. Wei, S. Jin, J. Zhang, S. He, X.-J. Liang, Cancer Res. 73, 319 (2013)

    Article  Google Scholar 

  • A. Ivascu, M. Kubbies, J. Biomol. Screen. 11, 922 (2006)

    Article  Google Scholar 

  • R.K. Jain, Annu. Rev. Biomed. Eng. 1, 241 (1999)

    Article  Google Scholar 

  • H. Karlsson, M. Fryknäs, R. Larsson, P. Nygren, Exp. Cell Res. 318, 1577 (2012)

    Article  Google Scholar 

  • J.M. Kelm, N.E. Timmins, C.J. Brown, M. Fussenegger, L.K. Nielsen, Biotechnol. Bioeng. 83, 173 (2003)

    Article  Google Scholar 

  • A. Khademhosseini, R. Langer, J. Borenstein, J.P. Vacanti, Proc. Natl. Acad. Sci. U. S. A. 103, 2480 (2006)

    Article  Google Scholar 

  • L.A. Kunz-Schughart, J.P. Freyer, F. Hofstaedter, R. Ebner, J. Biomol. Screen. 9, 273 (2004)

    Article  Google Scholar 

  • M. Li, R. R. Pathak, E. Lopez-Rivera, S. L. Friedman, J. A. Aguirre-Ghiso, and A. G. Sikora, J. Vis. Exp. (2015).

  • I.W. Mak, N. Evaniew, M. Ghert, Am. J. Transl. Res. 6, 114 (2014)

    Google Scholar 

  • A.N. Mehesz, J. Brown, Z. Hajdu, W. Beaver, J.V.L. da Silva, R.P. Visconti, R.R. Markwald, V. Mironov, Biofabrication 3, 025002 (2011)

    Article  Google Scholar 

  • J.W. Nichols, Y.H. Bae, Nano Today 7, 606 (2012)

    Article  Google Scholar 

  • F. Pampaloni, E.G. Reynaud, E.H.K. Stelzer, Nat. Rev. Mol. Cell Biol. 8, 839 (2007)

    Article  Google Scholar 

  • S.D. Perrault, C. Walkey, T. Jennings, H.C. Fischer, W.C.W. Chan, Nano Lett. 9, 1909 (2009)

    Article  Google Scholar 

  • S. Raghavan, P. Mehta, E.N. Horst, M.R. Ward, K.R. Rowley, G. Mehta, Oncotarget 7, 16948 (2016)

    Article  Google Scholar 

  • R. Ravizza, R. Molteni, M.B. Gariboldi, E. Marras, G. Perletti, E. Monti, Eur. J. Cancer 45, 890 (2009)

    Article  Google Scholar 

  • K.P.M. Ricketts, U. Cheema, A. Nyga, A. Castoldi, C. Guazzoni, T. Magdeldin, M. Emberton, A.P. Gibson, G.J. Royle, M. Loizidou, Small 10, 3954 (2014)

    Article  Google Scholar 

  • V.E. Santo, M.F. Estrada, S.P. Rebelo, S. Abreu, I. Silva, C. Pinto, S.C. Veloso, A.T. Serra, E. Boghaert, P.M. Alves, C. Brito, J. Biotechnol. 221, 118 (2016)

    Article  Google Scholar 

  • A.M. Shannon, D.J. Bouchier-Hayes, C.M. Condron, D. Toomey, Cancer Treat. Rev. 29, 297 (2003)

    Article  Google Scholar 

  • B. W. Stewart, C. Wild, International Agency for Research on Cancer, and World Health Organization, editors , World Cancer Report 2014 (International Agency for Research on Cancer, Lyon, France, 2014).

  • R.M. Sutherland, Science 240, 177 (1988)

    Article  Google Scholar 

  • M. Theodoraki, C.J. Rezende, O. Chantarasriwong, A. Corben, E. Theodorakis, M. Alpaugh, Oncotarget 6, 21255 (2015)

    Article  Google Scholar 

  • C. Wang, Z. Tang, Y. Zhao, R. Yao, L. Li, W. Sun, Biofabrication 6, 022001 (2014)

    Article  Google Scholar 

  • G.M. Whitesides, Nature 442, 368 (2006)

    Article  Google Scholar 

  • C. Wong, T. Stylianopoulos, J. Cui, J. Martin, V.P. Chauhan, W. Jiang, Z. Popović, R.K. Jain, M.G. Bawendi, D. Fukumura, Proc. Natl. Acad. Sci. 108, 2426 (2011)

    Article  Google Scholar 

  • H. Yanagie, S. Higashi, K. Seguchi, I. Ikushima, M. Fujihara, Y. Nonaka, K. Oyama, S. Maruyama, R. Hatae, M. Suzuki, S. Masunaga, T. Kinashi, Y. Sakurai, H. Tanaka, N. Kondo, M. Narabayashi, T. Kajiyama, A. Maruhashi, K. Ono, J. Nakajima, M. Ono, H. Takahashi, M. Eriguchi, Appl. Radiat. Isot. 88, 32 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge support from the OIST Graduate University with subsidy funding from the Cabinet Office, Government of Japan. We also thank the Yamamoto unit at OIST for providing cells and helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy Q. Shen.

Electronic supplementary material

ESM 1

(DOCX 899 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baye, J., Galvin, C. & Shen, A.Q. Microfluidic device flow field characterization around tumor spheroids with tunable necrosis produced in an optimized off-chip process. Biomed Microdevices 19, 59 (2017). https://doi.org/10.1007/s10544-017-0200-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-017-0200-5

Keywords

Navigation