Skip to main content

Advertisement

Log in

Applications and theory of electrokinetic enrichment in micro-nanofluidic chips

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

This review reports the progress on the recent development of electrokinetic enrichment in micro-nanofluidic chips. The governing equations of electrokinetic enrichment in micro-nanofluidic chips are given. Various enrichment applications including protein analysis, DNA analysis, bacteria analysis, viruses analysis and cell analysis are illustrated and discussed. The advantages and difficulties of each enrichment method are expatiated. This paper will provide a particularly convenient and valuable reference to those who intend to research the electrokinetic enrichment based on micro-nanofluidic chips.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • K. Aïzel, V. Agache, C. Pudda, et al., Enrichment of nanoparticles and bacteria using electroless and manual actuation modes of a bypass nanofluidic device[J]. Lab Chip 13(22), 4476–4485 (2013)

    Article  Google Scholar 

  • M. Arca, A.J.C. Ladd, J.E. Butler, Electro-hydrodynamic concentration of genomic length DNA[J]. Soft Matter 12(33), 6975–6984 (2016)

    Article  Google Scholar 

  • P. Augustsson, C. Magnusson, M. Nordin, et al., Microfluidic, label-free enrichment of prostate cancer cells in blood based on acoustophoresis[J]. Anal. Chem. 84(18), 7954–7962 (2012)

    Article  Google Scholar 

  • G. Bruno, G. Canavese, X. Liu, et al., The active modulation of drug release by an ionic field effect transistor for an ultra-low power implantable nanofluidic system[J]. Nano 8(44), 18718–18725 (2016)

    Google Scholar 

  • X.Y. Chen, T.C. Li, A novel passive micromixer designed by applying an optimization algorithm to the zigzag microchannel[J]. Chem. Eng. J. (2016). doi:10.1016/j.cej.2016.11.052

    Google Scholar 

  • G.D. Chen, C.J. Alberts, W. Rodriguez, et al., Concentration and purification of human immunodeficiency virus type 1 virions by microfluidic separation of superparamagnetic nanoparticles[J]. Anal. Chem. 82(2), 723–728 (2009)

    Article  Google Scholar 

  • Y.W. Chen, H. Wang, M. Hupert, et al., Modular microfluidic system fabricated in thermoplastics for the strain-specific detection of bacterial pathogens[J]. Lab Chip 12(18), 3348–3355 (2012)

    Article  Google Scholar 

  • Y.Y. Chen, P.H. Chiu, C.H. Weng, et al., Preconcentration of diluted mixed-species samples following separation and collection in a micro–nanofluidic device[J]. Biomicrofluidics 10(1), 014119 (2016)

    Article  Google Scholar 

  • J. Dai, T. Ito, L. Sun, et al., Electrokinetic trapping and concentration enrichment of DNA in a microfluidic channel[J]. J. Am. Chem. Soc. 125(43), 13026–13027 (2003)

    Article  Google Scholar 

  • H. Daiguji, P. Yang, A. Majumdar, Ion transport in nanofluidic channels[J]. Nano Lett. 4(1), 137–142 (2004)

    Article  Google Scholar 

  • T.F. Didar, M. Tabrizian, Adhesion based detection, sorting and enrichment of cells in microfluidic lab-on-Chip devices[J]. Lab Chip 10(22), 3043–3053 (2010)

    Article  Google Scholar 

  • J.R. Du, H.H. Wei, Focusing and trapping of DNA molecules by head-on ac electrokinetic streaming through join asymmetric polarization[J]. Biomicrofluidics 4(3), 034108 (2010)

    Article  Google Scholar 

  • M. Elitas, R. Martinez-Duarte, N. Dhar, et al., Dielectrophoresis-based purification of antibiotic-treated bacterial subpopulations[J]. Lab Chip 14(11), 1850–1857 (2014)

    Article  Google Scholar 

  • J.V. Green, S.K. Murthy, Microfluidic enrichment of a target cell type from a heterogenous suspension by adhesion-based negative selection[J]. Lab Chip 9(15), 2245–2248 (2009)

    Article  Google Scholar 

  • J. Grimme, T. King, K.D. Jo, et al., Development of Fieldable lab-on-a-Chip Systems for detection of a broad Array of targets from toxicants to Biowarfare agents[J]. J. Nanotechnol Eng Med 4(2), 020904 (2013)

    Article  Google Scholar 

  • S.C. Hur, N.K. Henderson-MacLennan, E.R.B. McCabe, et al., Deformability-based cell classification and enrichment using inertial microfluidics[J]. Lab Chip 11(5), 912–920 (2011a)

    Article  Google Scholar 

  • S.C. Hur, A.J. Mach, D. Di Carlo, High-throughput size-based rare cell enrichment using microscale vortices[J]. Biomicrofluidics 5(2), 022206 (2011b)

    Article  Google Scholar 

  • C.P. Jen, T.G. Amstislavskaya, K.F. Chen, et al., Sample preconcentration utilizing nanofractures generated by junction gap breakdown assisted by self-assembled monolayer of gold nanoparticles[J]. PLoS One 10(5), e0126641 (2015)

    Article  Google Scholar 

  • X. Jin, S. Joseph, E.N. Gatimu, et al., Induced electrokinetic transport in micro-nanofluidic interconnect devices[J]. Langmuir 23(26), 13209–13222 (2007)

    Article  Google Scholar 

  • W. Jing, W. Zhao, S. Liu, et al., Microfluidic device for efficient airborne bacteria capture and enrichment[J]. Anal. Chem. 85(10), 5255–5262 (2013)

    Article  Google Scholar 

  • S.M. Kim, M.A. Burns, E.F. Hasselbrink, Electrokinetic protein preconcentration using a simple glass/poly (dimethylsiloxane) microfluidic chip[J]. Anal. Chem. 78(14), 4779–4785 (2006)

    Article  Google Scholar 

  • S.J. Kim, Y.A. Song, J. Han, Nanofluidic concentration devices for biomolecules utilizing ion concentration polarization: Theory, fabrication, and applications[J]. Chem. Soc. Rev. 39(3), 912–922 (2010)

    Article  Google Scholar 

  • J. Kim, J.P. Hilton, K.A. Yang, et al., Nucleic acid isolation and enrichment on a microchip[J]. Sensors Actuators A Phys. 195, 183–190 (2013)

    Article  Google Scholar 

  • K.W. Kwon, S.S. Choi, S.H. Lee, et al., Label-free, microfluidic separation and enrichment of human breast cancer cells by adhesion difference[J]. Lab Chip 7(11), 1461–1468 (2007)

    Article  Google Scholar 

  • K.T. Liao, C.F. Chou, Nanoscale molecular traps and dams for ultrafast protein enrichment in high-conductivity buffers[J]. J. Am. Chem. Soc. 134(21), 8742–8745 (2012)

    Article  Google Scholar 

  • Masuda T, Maruyama H, Honda A, et al. Active virus filter for enrichment and manipulation of virus[C]//Micro Electro Mechanical Systems (MEMS), 2011 I.E. 24th international conference on. IEEE, 2011: 1099–1102

  • S.K. Murthy, P. Sethu, G. Vunjak-Novakovic, et al., Size-based microfluidic enrichment of neonatal rat cardiac cell populations[J]. Biomed. Microdevices 8(3), 231–237 (2006)

    Article  Google Scholar 

  • M. Napoli, J.C.T. Eijkel, S. Pennathur, Nanofluidic technology for biomolecule applications: A critical review[J]. Lab Chip 10(8), 957–985 (2010)

    Article  Google Scholar 

  • K.H. Paik, Y. Liu, V. Tabard-Cossa, et al., Control of DNA capture by nanofluidic transistors[J]. ACS Nano 6(8), 6767–6775 (2012)

    Article  Google Scholar 

  • M.C. Park, M. Kim, G.T. Lim, et al., Droplet-based magnetic bead immunoassay using microchannel-connected multiwell plates (μCHAMPs) for the detection of amyloid beta oligomers[J]. Lab Chip 16(12), 2245–2253 (2016)

    Article  Google Scholar 

  • C. Peskoller, R. Niessner, M. Seidel, Cross-flow microfiltration system for rapid enrichment of bacteria in water[J]. Anal. Bioanal. Chem. 393(1), 399–404 (2009)

    Article  Google Scholar 

  • J.A. Phillips, Y. Xu, Z. Xia, et al., Enrichment of cancer cells using aptamers immobilized on a microfluidic channel[J]. Anal. Chem. 81(3), 1033–1039 (2008)

    Article  Google Scholar 

  • S. Podszun, P. Vulto, H. Heinz, et al., Enrichment of viable bacteria in a micro-volume by free-flow electrophoresis[J]. Lab Chip 12(3), 451–457 (2012)

    Article  Google Scholar 

  • H. Ranchon, R. Malbec, V. Picot, et al., DNA separation and enrichment using electro-hydrodynamic bidirectional flows in viscoelastic liquids[J]. Lab Chip 16(7), 1243–1253 (2016)

    Article  Google Scholar 

  • A. Sin, S.K. Murthy, A. Revzin, et al., Enrichment using antibody-coated microfluidic chambers in shear flow: Model mixtures of human lymphocytes[J]. Biotechnol. Bioeng. 91(7), 816–826 (2005)

    Article  Google Scholar 

  • H. Song, Y. Wang, C. Garson, et al., Nafion-film-based micro–nanofluidic device for concurrent DNA preconcentration and separation in free solution[J]. Microfluid. Nanofluid. 17(4), 693–699 (2014)

    Article  Google Scholar 

  • D. Stein, Z. Deurvorst, F.H.J. van der Heyden, et al., Electrokinetic concentration of DNA polymers in nanofluidic channels[J]. Nano Lett. 10(3), 765–772 (2010)

    Article  Google Scholar 

  • K.B. Sung, K.P. Liao, Y.L. Liu, et al., Development of a nanofluidic preconcentrator with precise sample positioning and multi-channel preconcentration[J]. Microfluid. Nanofluid. 14(3–4), 645–655 (2013)

    Article  Google Scholar 

  • Y.C. Wang, J. Han, Pre-binding dynamic range and sensitivity enhancement for immuno-sensors using nanofluidic preconcentrator[J]. Lab Chip 8(3), 392–394 (2008)

    Article  MathSciNet  Google Scholar 

  • Wang J, Liu C. Electrokinetic ion transport in confined micro-nanochannel[J]. Electrophoresis, 2016.

  • Y.C. Wang, A.L. Stevens, J. Han, Million-fold preconcentration of proteins and peptides by nanofluidic filter[J]. Anal. Chem. 77(14), 4293–4299 (2005)

    Article  Google Scholar 

  • C. Wang, J. Ouyang, H.L. Gao, et al., UV-ablation nanochannels in micro/nanofluidics devices for biochemical analysis[J]. Talanta 85(1), 298–303 (2011)

    Article  Google Scholar 

  • C. Wang, J. Ouyang, Y.Y. Wang, et al., Sensitive assay of protease activity on a micro/Nanofluidics Preconcentrator fused with the fluorescence resonance energy transfer detection technique[J]. Anal. Chem. 86(6), 3216–3221 (2014)

    Article  Google Scholar 

  • C. Wang, Y. Shi, J. Wang, et al., Ultrasensitive protein concentration detection on a micro/Nanofluidic enrichment Chip using fluorescence quenching[J]. ACS Appl. Mater. Interfaces 7(12), 6835–6841 (2015)

    Article  Google Scholar 

  • Z. Wu, B. Willing, J. Bjerketorp, et al., Soft inertial microfluidics for high throughput separation of bacteria from human blood cells[J]. Lab Chip 9(9), 1193–1199 (2009)

    Article  Google Scholar 

  • Z.Y. Wu, F. Fang, Y.Q. He, et al., Flexible and efficient eletrokinetic stacking of DNA and proteins at an HF etched porous junction on a fused silica capillary[J]. Anal. Chem. 84(16), 7085–7091 (2012)

    Article  Google Scholar 

  • Y. Xu, J.A. Phillips, J. Yan, et al., Aptamer-based microfluidic device for enrichment, sorting, and detection of multiple cancer cells[J]. Anal. Chem. 81(17), 7436–7442 (2009)

    Article  Google Scholar 

  • L. Yang, P.P. Banada, M.R. Chatni, et al., A multifunctional micro-fluidic system for dielectrophoretic concentration coupled with immuno-capture of low numbers of listeria monocytogenes[J]. Lab Chip 6(7), 896–905 (2006)

    Article  Google Scholar 

  • H. Yu, Y. Lu, Y. Zhou, et al., A simple, disposable microfluidic device for rapid protein concentration and purification via direct-printing[J]. Lab Chip 8(9), 1496–1501 (2008)

    Article  Google Scholar 

  • B. Zhu, J. Smith, M.L. Yarmush, et al., Microfluidic enrichment of mouse epidermal stem cells and validation of stem cell proliferation in vitro[J]. Tissue Eng Part C: Methods 19(10), 765–773 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Liaoning Province Doctor Startup Fund (20141131) and Fund of Liaoning Province Education Administration (L2014241).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueye Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Zhang, S., Zhang, L. et al. Applications and theory of electrokinetic enrichment in micro-nanofluidic chips. Biomed Microdevices 19, 19 (2017). https://doi.org/10.1007/s10544-017-0168-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-017-0168-1

Keywords

Navigation