Skip to main content
Log in

Density-gradient-assisted centrifugal microfluidics: an approach to continuous-mode particle separation

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Centrifugal microfluidics has been recognized as a promising pumping method in microfluidics because of its simplicity, easiness of automation, and parallel processing. However, the patterning of stripe flow in centrifugal microfluidics is challenging because a fluid is significantly affected by the Coriolis force, which produces an intrinsic secondary flow. This paper reports a technical and design strategy for centrifugal microfluidics called “density-gradient-assisted centrifugal microfluidics.” The flow behavior is observed with the presence of a density gradient and without a density gradient in two concentrically traveling phase flows. As a result, clear stripe flow pattern is observed with a density difference of 0.05 g/cm3 between water and a percoll solution at a flow rate of 11.8 μl/s (7 ml/10 min) and spinning speed of 3000 rpm. In contrast, without a density gradient, it is necessary to reduce the flow rate and spinning speed to 0.1 μl/s and 1000 rpm, respectively. This paper also presents the use of a density gradient to assist in focusing resin (polystyrene) particles on the boundary of a stripe flow pattern that consists of water and percoll with different densities. Moreover, the density-based separation and sorting of particles in a mixed particle suspension is demonstrated. Polystyrene is selectively focused on the boundary, but silica particles are separated from the focused trajectory due to a difference in density. The separated particles are continuously sorted into different reservoirs with polystyrene and silica separation efficiencies of 96.5% and 98.5%, respectively. The pumping, stripe flow pattern formation, particle concentration, and sorting are simultaneously realized by applying a density gradient and centrifugal force. Therefore, this principle can realize a very simple technique for label-free particle separation by just spinning a disk device and can be applied in other applications by the use of the density-gradient assistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • A.A.S. Bhagat, S.S. Kuntaegowdanahalli, I. Papautsky, Lab Chip 8, 1906–1914 (2008)

    Article  Google Scholar 

  • T.F. Didara, M. Tabrizian, Lab Chip 12, 4363–4371 (2012)

    Article  Google Scholar 

  • J. Ducrée, T. Brenner, S. Haeberle, T. Glatzel, R. Zengerle, Microfluid. Nanofluid. 2, 78–84 (2006a)

    Article  Google Scholar 

  • J. Ducrée, S. Haeberle, T. Brenner, T. Glatzel, R. Zengerle, Microfluid. Nanofluid. 2, 97–105 (2006b)

    Article  Google Scholar 

  • D.C. Duffy, J.C. McDonald, O.J.A. Schueller, G.M. Whitesides, Anal. Chem. 70, 4974–4984 (1998)

    Article  Google Scholar 

  • D.C. Duffy, H.L. Gillis, J. Lin, N.F. Sheppard Jr., G.J. Kellogg, Anal. Chem. 71, 4669–4678 (1999)

    Article  Google Scholar 

  • W.H. Grover, A.K. Bryan, M. Diez-Silva, S. Suresh, J.M. Higgins, S.R. Manalis, Proc. Natl. Acad. Sci. USA 108, 10992–10996 (2011)

    Article  Google Scholar 

  • M. Grumann, T. Brenner, C. Beer, R. Zengerle, J. Ducrée, Rev. Sci. Instrum. 76, 025101 (2005)

    Article  Google Scholar 

  • S. Hardt, T. Hahn, Lab Chip 12, 434–442 (2012)

    Article  Google Scholar 

  • D. Huh, J.H. Bahng, Y. Ling, H.-H. Wei, O.D. Kripfgans, J.B. Fowlkes, J.B. Grotberg, S. Takayama, Anal. Chem. 79, 1369–1376 (2007)

    Article  Google Scholar 

  • T. Kawai, N. Naruishi, H. Nagai, Y. Tanaka, Y. Hagihara, Y. Yoshida, Anal. Chem. 85, 6587–6592 (2013)

    Article  Google Scholar 

  • T. Kobayashi, T. Funamoto, M. Hosaka, S. Konishi, Jpn. J. Appl. Phys. 49, 077001 (2010)

    Article  Google Scholar 

  • S. Lay, S. Wang, J. Luo, L.J. Lee, S.T. Yang, M.J. Madou, Anal. Chem. 76, 1832–1838 (2004)

    Article  Google Scholar 

  • Y. Lu, Y. Xia, G. Luo, Microfluid. Nanofluid. 10, 1079–1086 (2011)

    Article  Google Scholar 

  • D. Mark, F. Stetten, R. Zengerle, Lab Chip 12, 2464–2468 (2012)

    Article  Google Scholar 

  • T. Morijiri, S. Sunahiro, M. Senaha, M. Yamada, M. Seki, Microfluid. Nanofluid. 11, 105–110 (2011)

    Article  Google Scholar 

  • T.V. Nguyen, P.N. Duncan, S. Ahrar, E.E. Hui, Lab Chip 12, 3991–3994 (2012)

    Article  Google Scholar 

  • N. Pamme, Lab Chip 7, 1644–1659 (2007)

    Article  Google Scholar 

  • H. Pertoft, J. Biochem, Biosys. Methods 44, 1–30 (2000)

    Google Scholar 

  • R. Safavieh, D. Juncker, Lab Chip 13, 4180–4189 (2013)

    Article  Google Scholar 

  • M. Tokeshi, T. Minagawa, K. Uchiyama, A. Hibara, K. Sato, H. Hisamoto, T. Kitamori, Anal. Chem. 74, 1565–1571 (2002)

    Article  Google Scholar 

  • M. Tsukamoto, S. Taira, S. Yamamura, Y. Morita, N. Nagatani, Y. Takamura, E. Tamiya, Analyst 134, 1994–1998 (2009)

    Article  Google Scholar 

  • Y. Ukita, Y. Takamura, Microfluid. Nanofluid. 15, 829–837 (2013)

    Article  Google Scholar 

  • Y. Ukita, Y. Takamura, Microfluid. Nanofluid. (under review) 2017

  • Y. Ukita, S. Kondo, T. Azeta, M. Ishizawa, C. Kataoka, M. Takeo, Y. Utsumi, Sensors Actuators B, 2012, 166-167, 898–906.

  • T. Wang, S. Oehrlein, M.M. Somoza, J.R.S. Perez, R. Kershner, F. Cerrina, Lab Chip 11, 1629–1637 (2011)

    Article  Google Scholar 

  • D.A. Wolff, H. Pertoft, 579-585. J. Cell Biol., 55 (1972)

  • X. Xuan, J. Zhu, C. Church, Microfluid. Nanofluid. 9, 1–16 (2010)

    Article  Google Scholar 

  • M. Yamada, M. Nakashima, M. Seki, Anal. Chem. 76, 5465–5471 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiaki Ukita.

Electronic supplementary material

ESM 1

(DOCX 513 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ukita, Y., Oguro, T. & Takamura, Y. Density-gradient-assisted centrifugal microfluidics: an approach to continuous-mode particle separation. Biomed Microdevices 19, 24 (2017). https://doi.org/10.1007/s10544-017-0158-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-017-0158-3

Keywords

Navigation