Skip to main content
Log in

Controlled evacuation using the biocompatible and energy efficient microfluidic ejector

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Development of controlled vacuum is having many applications in the realm of biotechnology, cell transfer, gene therapy, biomedical engineering and other engineering activities involving separation or chemical reactions. Here we show the controlled vacuum generation through a biocompatible, energy efficient, low-cost and flexible miniature device. We have designed and fabricated microfluidic devices from polydimethylsiloxane which are capable of producing vacuum at a highly controlled rate by using water as a motive fluid. Scrupulous removal of infected fluid/body fluid from the internal hemorrhage affected parts during surgical operations, gene manipulation, cell sorting, and other biomedical activities require complete isolation of the delicate cells or tissues adjacent to the targeted location. We demonstrate the potential of the miniature device to obtain controlled evacuation without the use of highly pressurized motive fluids. Water has been used as a motive liquid to eject vapor and liquid at ambient conditions through the microfluidic devices prepared using a low-cost fabrication method. The proposed miniature device may find applications in vacuum generation especially where the controlled rate of evacuation, and limited vacuum generation are of utmost importance in order to precisely protect the cells in the nearby region of the targeted evacuated area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • A. Aung, I. S. Bhullar, J. Theprungsirikul, S. K. Davey, H. L. Lim, Y. Chiu, X. Ma, S. Dewan, Y. Lo, A. Mcculloch, S. Varghese, Lab Chip 16, 153 (2016)

    Article  Google Scholar 

  • R. P. Bauman, Am. J. Phys. 68, 288 (2000)

    Article  Google Scholar 

  • C. Carbonell, K. C. Stylianou, J. Hernando, E. Evangelio, S. A. Barnett, S. Nettikadan, I. Imaz, D. Maspoch, Nat. Commun. 4 (2013)

  • R. de Alteriis, R. Vecchione, C. Attanasio, M. De Gregorio, M. Porzio, E. Battista, P. A. Netti, Sci. Rep. 5, 12634 (2015)

    Article  Google Scholar 

  • A. J. deMello, Nature 442, 394 (2006)

    Article  Google Scholar 

  • S. P. Desai, D. M. Freeman, J. Voldman, Lab Chip 9, 1631 (2009)

    Article  Google Scholar 

  • T. A. Duncombe, A. M. Tentori, A. E. Herr, Nat Rev Mol Cell Biol 16, 554 (2015)

    Article  Google Scholar 

  • S. Elbel, N. Lawrence, Int. J. Refrig. 62, 1 (2016)

    Article  Google Scholar 

  • L. Gervais, E. Delamarche, Lab Chip 9, 3330 (2009)

    Article  Google Scholar 

  • H. Hirama, T. Torii, Sci. Rep. 5, 15196 (2015)

    Article  Google Scholar 

  • J. Hong, Y. Kwon Kim, D.-J. Won, J. Kim, and S. Joon Lee, Nat. Publ. Gr. (2015).

  • D.-K. Kang, M. M. Ali, K. Zhang, S. S. Huang, E. Peterson, M. A. Digman, E. Gratton, W. Zhao, Nat. Commun. 5 (2014)

  • F. Kong, H. D. Kim, Int. J. Heat Mass Transf. 85, 71 (2015)

    Article  Google Scholar 

  • V. N. Lad, Z. V. P. Murthy, J. Mech. Sci. Technol. 30, 1625 (2016)

    Article  Google Scholar 

  • B. S. Lee, Y. U. Lee, H.-S. Kim, T.-H. Kim, J. Park, J.-G. Lee, J. Kim, H. Kim, W. G. Lee, Y.-K. Cho, Lab Chip 11, 70 (2011)

    Article  Google Scholar 

  • G.-B. Lee, C.-J. Chang, C.-H. Wang, M.-Y. Lu, Y.-Y. Luo, Microsystems Nanoeng. 1, 15007 (2015)

    Article  Google Scholar 

  • W. Li, T. Chen, Z. Chen, P. Fei, Z. Yu, Y. Pang, Y. Huang, Lab Chip 12, 1587 (2012)

    Article  Google Scholar 

  • C. G. Lopez, T. Watanabe, A. Martel, L. Porcar, J. T. Cabral, Sci. Rep. 5 (2015)

  • N. S. Lynn, D. S. Dandy, Lab Chip 9, 3422 (2009)

    Article  Google Scholar 

  • P. R. Pereira, S. Varga, J. Soares, A. C. Oliveira, A. M. Lopes, F. G. de Almeida, J. F. Carneiro, Int. J. Refrig. 46, 77 (2014)

    Article  Google Scholar 

  • A. Rakszewska, J. Tel, V. Chokkalingam, W. T. S. Huck, NPG Asia Mater 6, e133 (2014)

    Article  Google Scholar 

  • N. Ruangtrakoon, T. Thongtip, S. Aphornratana, T. Sriveerakul, Int. J. Therm. Sci. 63, 133 (2013)

    Article  Google Scholar 

  • E. K. Sackmann, A. L. Fulton, D. J. Beebe, Nature 507, 181 (2014)

    Article  Google Scholar 

  • O. Samaké, N. Galanis, M. Sorin, Desalination 381, 15 (2016)

    Article  Google Scholar 

  • D. Strušnik, M. Marčič, M. Golob, A. Hribernik, M. Živić, J. Avsec, Appl. Energy 173, 386 (2016)

    Article  Google Scholar 

  • Y. Sun, Y. C. Kwok, Anal. Chim. Acta 556, 80 (2006)

    Article  Google Scholar 

  • Y. Tanaka, K. Morishima, T. Shimizu, A. Kikuchi, M. Yamato, T. Okano, T. Kitamori, Lab Chip 6, 362 (2006)

    Article  Google Scholar 

  • Y. Tanaka, K. Sato, T. Shimizu, M. Yamato, T. Okano, T. Kitamori, Lab Chip 7, 207 (2007)

    Article  Google Scholar 

  • M. Utz, J. Landers, Science 330, 1056 (2010)

    Article  Google Scholar 

  • M. K. S. Verma, S. R. Ganneboyina, R. Vinayak Rakshith, A. Ghatak, Langmuir 24, 2248 (2008)

    Article  Google Scholar 

  • G. M. Walker, D. J. Beebe, Lab Chip 2, 131 (2002)

    Article  Google Scholar 

  • B. L. Wang, A. Ghaderi, H. Zhou, J. Agresti, D. A. Weitz, G. R. Fink, G. Stephanopoulos, Nat Biotech 32, 473 (2014)

    Article  Google Scholar 

  • F. M. White, Fluid mechanics, 4th edn. (McGraw-Hill, New York, 1998)

    Google Scholar 

  • G. M. Whitesides, Nature 442, 368 (2006)

    Article  Google Scholar 

  • R. W. Whittlesey, J. O. Dabiri, J. Fluid Mech. 737, 78 (2013)

    Article  Google Scholar 

  • M. Wu, A. K. Singh, Curr. Opin. Biotechnol. 23, 83 (2012)

    Article  Google Scholar 

  • D. Wu, J. Xu, L.-G. Niu, S.-Z. Wu, K. Midorikawa, K. Sugioka, Light Sci. Appl. 4 (2015)

  • J. Q. Yu, X. F. Liu, L. K. Chin, A. Q. Liu, K. Q. Luo, Lab Chip 13, 2693 (2013)

    Article  Google Scholar 

  • S. Yu, X. Cheng, H. Fang, R. Zhang, J. Han, X. Qin, Q. Cheng, W. Su, L. Hou, L. Xia, L. Qiu, Sci. Rep. 5, 14636 (2015)

    Article  Google Scholar 

  • L. D. Zarzar, V. Sresht, E. M. Sletten, J. A. Kalow, D. Blankschtein, T. M. Swager, Nature 518, 520 (2015)

    Article  Google Scholar 

  • M. Zimmermann, S. Bentley, H. Schmid, P. Hunziker, E. Delamarche, Lab Chip 5, 1355 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

Authors are thankful to Sardar Vallabhbhai National Institute of Technology - Surat for providing infrastructure and support through Institute Research Grant.

Authors’ contribution

V.N.L. conceived and designed the study, performed some experiments, gave conceptual advice and guidance, and supervised the work. S.R. performed many experiments. V.N.L. and S.R. analyzed data. V.N.L. interpreted the results, and wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Lad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lad, V.N., Ralekar, S. Controlled evacuation using the biocompatible and energy efficient microfluidic ejector. Biomed Microdevices 18, 96 (2016). https://doi.org/10.1007/s10544-016-0119-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-016-0119-2

Keywords

Navigation