Skip to main content
Log in

Lab on a chip-based hepatic sinusoidal system simulator for optimal primary hepatocyte culture

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Primary hepatocyte cultures have been used in studies on liver disease, physiology, and pharmacology. While they are an important tool for in vitro liver studies, maintaining liver-specific characteristics of hepatocytes in vitro is difficult, as these cells rapidly lose their unique characteristics and functions. Portal flow is an important condition to preserve primary hepatocyte functions and liver regeneration in vivo. We have developed a microfluidic chip that does not require bulky peripheral devices or an external power source to investigate the relationship between hepatocyte functional maintenance and flow rates. In our culture system, two types of microfluidic devices were used as scaffolds: a monolayer- and a concave chamber-based device. Under flow conditions, our chips improved albumin and urea secretion rates after 13 days compared to that of the static chips. Reverse transcription polymerase chain reaction demonstrated that hepatocyte-specific gene expression was significantly higher at 13 days under flow conditions than when using static chips. For both two-dimensional and three-dimensional culture on the chips, flow resulted in the best performance of the hepatocyte culture in vitro. We demonstrated that flow improves the viability and efficiency of long-term culture of primary hepatocytes and plays a key role in hepatocyte function. These results suggest that this flow system has the potential for long-term hepatocyte cultures as well as a technique for three-dimensional culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • R. Baudoin, G. Alberto, A. Legendre, P. Paullier, M. Naudot, M. J. Fleury, S. Jacques, L. Griscom, E. Leclerc, Biotechnol. Prog. 30, 401–410 (2014)

    Article  Google Scholar 

  • C. H. Cho, J. Park, A. W. Tilles, F. Berthiaume, M. Toner, M. L. Yarmush, BioTechniques 48, 47–52 (2010)

    Article  Google Scholar 

  • A. Dash, M. B. Simmers, T. G. Deering, D. J. Berry, R. E. Feaver, N. E. Hastings, T. L. Pruett, E. L. LeCluyse, B. R. Blackman, B. R. Wamhoff, Amer. J. Physiol. Cell Physiol. 304, C1053–C1063 (2013)

    Article  Google Scholar 

  • J. Dich, N. Grunnet, Anal. Biochem. 206, 68–72 (1992)

    Article  Google Scholar 

  • K. Domansky, W. Inman, J. Serdy, A. Dash, M. H. Lim, L. G. Griffith, Lab Chip 10, 51–58 (2010)

    Article  Google Scholar 

  • R. Enat, D. M. Jefferson, N. Ruiz-Opazo, Z. Gatmaitan, L. A. Leinwand, L. M. Reid, Proc. Natl. Acad. Sci. U. S. A. 81, 1411–1415 (1984)

    Article  Google Scholar 

  • F. Evenou, S. Couderc, B. Kim, T. Fujii, Y. Sakai, J. Biomater, Sci. Polym. Ed. 22, 1509–1522 (2011)

    Google Scholar 

  • H. Farghali, L. Kamenikova, S. Hynie, Physiol. Res. 43, 117–120 (1994)

    Google Scholar 

  • R. Gebhardt, D. Mecke, Exp. Cell Res. 124, 349–359 (1979)

    Article  Google Scholar 

  • R. Glicklis, J. C. Merchuk, S. Cohen, Biotechnol. Bioeng. 86, 672–680 (2004)

    Article  Google Scholar 

  • A. Guillouzo, F. Morel, O. Fardel, B. Meunier, Toxicology 82, 209–219 (1993)

    Article  Google Scholar 

  • C. Hansen, S. R. Quake, Curr. Opin. Struct. Biol. 13, 538–544 (2003)

    Article  Google Scholar 

  • N. J. Hewitt, M. J. Lechon, J. B. Houston, D. Hallifax, H. S. Brown, P. Maurel, J. G. Kenna, L. Gustavsson, C. Lohmann, C. Skonberg, A. Guillouzo, G. Tuschl, A. P. Li, E. LeCluyse, G. M. Groothuis, J. G. Hengstler, Drug Metab. Rev. 39, 159–234 (2007)

    Article  Google Scholar 

  • H. O. Jauregui, N. T. Hayner, J. L. Driscoll, R. Williams-Holland, M. H. Lipsky, P. M. Galletti, In Vitro 17, 1100–1110 (1981)

    Article  Google Scholar 

  • P. Kan, H. Miyoshi, K. Yanagi, N. Ohshima, ASAIO J. 44, M441–M444 (1998)

    Article  Google Scholar 

  • B. J. Kane, M. J. Zinner, M. L. Yarmush, M. Toner, Anal. Chem. 78, 4291–4298 (2006)

    Article  Google Scholar 

  • S. R. Khetani, S. N. Bhatia, Nat. Biotechnol. 26, 120–126 (2008)

    Article  Google Scholar 

  • L. Kim, Y. C. Toh, J. Voldman, H. Yu, Lab Chip 7, 681–694 (2007)

    Article  Google Scholar 

  • R. Kojima, K. Yoshimoto, E. Takahashi, M. Ichino, H. Miyoshi, Y. Nagasaki, Lab Chip 9, 1991–1993 (2009)

    Article  Google Scholar 

  • A. Langsch, A. Bader, Biotechnol. Bioeng. 76, 115–125 (2001)

    Article  Google Scholar 

  • G. A. Ledezma, A. Folch, S. N. Bhatia, U. J. Balis, M. L. Yarmush, M. Toner, J. Biomech. Eng. 121, 58–64 (1999)

    Article  Google Scholar 

  • K. H. Lee, S. J. Shin, C. B. Kim, J. K. Kim, Y. W. Cho, B. G. Chung, S. H. Lee, Lab Chip 10, 1328–1334 (2010)

    Article  Google Scholar 

  • S. A. Lee, Y. No da, E. Kang, J. Ju, D. S. Kim, S. H. Lee, Lab Chip 13, 3529–3537 (2013)

    Article  Google Scholar 

  • J. Lii, W. J. Hsu, H. Parsa, A. Das, R. Rouse, S. K. Sia, Anal. Chem. 80, 3640–3647 (2008)

    Article  Google Scholar 

  • K. Man, C. M. Lo, I. O. Ng, Y. C. Wong, L. F. Qin, S. T. Fan, J. Wong, Arch. Surg. 136, 280–285 (2001)

    Article  Google Scholar 

  • H. W. Matthew, J. Sternberg, P. Stefanovich, J. R. Morgan, M. Toner, R. G. Tompkins, M. L. Yarmush, Biotechnol. Bioeng. 51, 100–111 (1996)

    Article  Google Scholar 

  • M. Miyazawa, T. Torii, Y. Toshimitsu, I. Koyama, Transplant. Proc. 37, 2398–2401 (2005)

    Article  Google Scholar 

  • S. Ostrovidov, J. Jiang, Y. Sakai, T. Fujii, Biomed. Microdevices 6, 279–287 (2004)

    Article  Google Scholar 

  • J. Park, F. Berthiaume, M. Toner, M. L. Yarmush, A. W. Tilles, Biotechnol. Bioeng. 90, 632–644 (2005)

    Article  Google Scholar 

  • P. Rous, L. D. Larimore, J. Exp. Med. 31, 609–632 (1920)

    Article  Google Scholar 

  • S. Schmitmeier, A. Langsch, I. Jasmund, A. Bader, Biotechnol. Bioeng. 95, 1198–1206 (2006)

    Article  Google Scholar 

  • J. Schutte, B. Hagmeyer, F. Holzner, M. Kubon, S. Werner, C. Freudigmann, K. Benz, J. Bottger, R. Gebhardt, H. Becker, M. Stelzle, Biomed. Microdevices 13, 493–501 (2011)

    Article  Google Scholar 

  • M. J. Scott, S. Liu, G. L. Su, Y. Vodovotz, T. R. Billiar, Shock 23, 453–458 (2005)

    Article  Google Scholar 

  • P. O. Seglen, Methods Cell Biol. 13, 29–83 (1976)

    Article  Google Scholar 

  • J. S. Sidhu, F. M. Farin, T. J. Kavanagh, C. J. Omiecinski, In Vitro Toxicol 7, 225–242 (1994)

  • A. Sivaraman, J. K. Leach, S. Townsend, T. Iida, B. J. Hogan, D. B. Stolz, R. Fry, L. D. Samson, S. R. Tannenbaum, L. G. Griffith, Curr. Drug Metab. 6, 569–591 (2005)

    Article  Google Scholar 

  • R. Sudo, T. Mitaka, M. Ikeda, K. Tanishita, FASEB J. 19, 1695–1697 (2005)

    Google Scholar 

  • K. Takeshita, W. C. Bowen, G. K. Michalopoulos, In Vitro Cell. Dev. Biol. Anim. 34, 482–485 (1998)

  • M. Tanaka, K. Nishikawa, H. Okubo, H. Kamachi, T. Kawai, M. Matsushita, S. Todo, M. Shimomura, Colloids Surf. A Physicochem. Eng. Asp. 284, 464–469 (2006a)

    Article  Google Scholar 

  • Y. Tanaka, M. Yamato, T. Okano, T. Kitamori, K. Sato, Meas. Sci. Technol. 17, 3167–3170 (2006b)

    Article  Google Scholar 

  • Y. Tanaka, K. Sato, T. Shimizu, M. Yamato, T. Okano, T. Kitamori, Biosens. Bioelectron. 23, 449–458 (2007)

    Article  Google Scholar 

  • A. W. Tilles, H. Baskaran, P. Roy, M. L. Yarmush, M. Toner, Biotechnol. Bioeng. 73, 379–389 (2001)

    Article  Google Scholar 

  • A. Tourovskaia, X. Figueroa-Masot, A. Folch, Nat. Protoc. 1, 1092–1104 (2006)

    Article  Google Scholar 

  • D. van Poll, C. Sokmensuer, N. Ahmad, A. W. Tilles, F. Berthiaume, M. Toner, M. L. Yarmush, Tissue Eng. 12, 2965–2973 (2006)

    Article  Google Scholar 

  • B. Vinci, C. Duret, S. Klieber, S. Gerbal-Chaloin, A. Sa-Cunha, S. Laporte, B. Suc, P. Maurel, A. Ahluwalia, M. Daujat-Chavanieu, Biotechnol. J. 6, 554–564 (2011)

    Article  Google Scholar 

  • K. Viravaidya, A. Sin, M. L. Shuler, Biotechnol. Prog. 20, 316–323 (2004)

    Article  Google Scholar 

  • G. M. Whitesides, E. Ostuni, S. Takayama, X. Jiang, D. E. Ingber, Ann. Rev. Biomed. Eng. 3, 335–373 (2001)

    Article  Google Scholar 

  • X. Xu, K. Man, S. S. Zheng, T. B. Liang, T. K. Lee, K. T. Ng, S. T. Fan, C. M. Lo, Liver Transpl. 12, 621–627 (2006)

    Article  Google Scholar 

  • Y. Yokoyama, M. Nagino, Y. Nimura, World J. Surg. 31, 367–374 (2007)

    Article  Google Scholar 

  • K. Zeilinger, I. M. Sauer, G. Pless, C. Strobel, J. Rudzitis, A. Wang, A. K. Nussler, A. Grebe, L. Mao, S. H. Auth, J. Unger, P. Neuhaus, J. C. Gerlach, Altern. Lab. Anim 30, 525–538 (2002)

    Google Scholar 

  • I. K. Zervantonakis, C. R. Kothapalli, S. Chung, R. Sudo, R. D. Kamm, Biomicrofluidics 5, 13406 (2011)

    Article  Google Scholar 

  • J. Park, C. M. Hwang, S. H. Lee, S. H. Lee, Lab-on-a-chip 7, 1673–1680 (2007)

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF), funded by the Ministry of Education, Science, and Technology (2014R1A1A1A05006371).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Sik Kim.

Electronic Supplementary Material

ESM 1

(DOCX 116 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, Y.Y., Kim, J., Lee, SH. et al. Lab on a chip-based hepatic sinusoidal system simulator for optimal primary hepatocyte culture. Biomed Microdevices 18, 58 (2016). https://doi.org/10.1007/s10544-016-0079-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-016-0079-6

Keywords

Navigation