Skip to main content
Log in

Effect of gold nanoparticles on thermal gradient generation and thermotaxis of E. coli cells in microfluidic device

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Bacteria responds to changing chemical and thermal environment by moving towards or away from a particular location. In this report, we looked into thermal gradient generation and response of E. coli DH5α cells to thermal gradient in the presence and in the absence of spherical gold nanoparticles (size: 15 to 22 nm) in a static microfluidic environment using a polydimethylsiloxane (PDMS) made microfluidic device. A PDMS-agarose based microfluidic device for generating thermal gradient has been developed and the thermal gradient generation in the device has been validated with the numerical simulation. Our studies revealed that the presence of gold nanoparticles, AuNPs (0.649 μg/mL) has no effect on the thermal gradient generation. The E. coli DH5α cells have been treated with AuNPs of two different concentrations (0.649 μg/mL and 0.008 μg/mL). The thermotaxis behavior of cells in the presence of AuNPs has been studied and compared to the thermotaxis of E.coli DH5α cells in the absence of AuNPs. In case of thermotaxis, in the absence of the AuNPs, the E. coli DH5α cells showed better thermotaxis towards lower temperature range, whereas in the presence of AuNPs (0.649 μg/mL and 0.008 μg/mL) thermotaxis of the E. coli DH5α cells has been inhibited. The results show that the spherical AuNPs intervenes in the themotaxis of E. coli DH5α cells and inhibits the cell migration. The reason for the failure in thermotaxis response mechanism may be due to decreased F-type ATP synthase activity and collapse of membrane potential by AuNPs, which, in turn, leads to decreased ATP levels. This has been hypothesized since both thermotaxis and chemotaxis follows the same response mechanism for migration in which ATP plays critical role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • T. Ahmed, T. S. Shimizu, R. Stocker, Integr. Biol-UK 2, 604–629 (2010)

    Article  Google Scholar 

  • R. Bentley, R. Meganathan, Microbiol. Rev. 46, 241–280 (1982)

    Google Scholar 

  • S. M. Butler, A. Camilli, Nat. Rev. Microbiol. 3, 611–620 (2005)

    Article  Google Scholar 

  • K. C. Chang, S. J. Cheng, Y. C. Chen, H. R. Huang, J. W. Liou, J. Microbiol. Immunol. Infect. 46, 405–412 (2013)

    Article  Google Scholar 

  • J. J. Chen, C. M. Shen, Y. W. Ko, Biomed. Microdevices 15, 261–278 (2013)

    Article  Google Scholar 

  • Y. Cui, Y. Zhao, Y. Tian, W. Zhang, X. Lu, X. Jiang, Biomaterials 33, 2327–2333 (2012)

    Article  Google Scholar 

  • S. K. Das, S. Chung, I. Zervantonakis, J. Atnafu, R. D. Kamm, Biomicrofluidics 2, 034106 (2008)

    Article  Google Scholar 

  • L. Dykman, N. Khlebtsov, Chem. Soc. Rev. 41, 2256–2282 (2012)

    Article  Google Scholar 

  • R. G. Endres, Physical principles in sensing and signaling: with an introduction to Modelling in biology, 1st edn. (Oxford University Press, United Kingdom, 2013), p. 109

    Google Scholar 

  • D. Erickson, D. Sinton, D. Li, Lab Chip 3, 141–149 (2003)

    Article  Google Scholar 

  • G. Frens, Kolloid-Z Z Polym. 250, 736–741 (1972)

    Article  Google Scholar 

  • Y. Hou, K. Cai, J. Li, X. Chen, M. Lai, Y. Hu, Z. Luo, X. Ding, D. Xu, Int. J. Nanomedicine 8, 3619–3630 (2013)

    Google Scholar 

  • S. M. Kim, G. J. Sommer, M. A. Burns, E. F. Hasselbrink, Anal. Chem. 78, 8028–8035 (2006)

    Article  Google Scholar 

  • C. D. Köhler, U. Dobrindt, Int. J. Med. Microbiol. 30, 642–647 (2011)

    Article  Google Scholar 

  • G. V. Maltzahn, J. H. Park, A. Agrawal, N. K. Bandaru, S. K. Das, M. J. Sailor, S. N. Bhatia, Cancer Res. 69, 9 (2009)

    Google Scholar 

  • H. Mao, T. Yang, P. S. Cremer, J. Am. Chem. Soc. 124, 432–4435 (2002)

    Google Scholar 

  • N. Murugesan, T. Panda, S.K. Das, Engineering in medicine and biology society (EMBC), 37th annual international conference of the IEEE (2015) doi:10.1109/EMBC.2015.7319076

  • N. Murugesan, S. Singha, T. Panda, S. K. Das, J. Micromech. Microeng. 26, 35011–35022 (2016)

    Article  Google Scholar 

  • C. M. Pitsillides, E. K. Joe, X. Wei, R. R. Anderson, C. P. Lin, Biophys. J. 84, 4023–4032 (2003)

    Article  Google Scholar 

  • W. N. Rahman, R. Davidson, N. Yagi, V. Bansal, M. Geso, I. Darby, Bio. Nano. Sci. 1, 4–13 (2011)

    Google Scholar 

  • H. Salman, A. Libchaber, Nat. Cell Biol. 9, 1098–1100 (2007)

    Article  Google Scholar 

  • V. Sourjik, N. S. Wingreen, Nat. Cell Biol. 9, 1029–1031 (2007)

    Article  Google Scholar 

  • E. Tamar, M. Koler, A. Vaknin, Sci. Rep. 6, 19616 (2016)

    Article  Google Scholar 

  • C. Y. Tay, P. Cai, M. I. Setyawati, W. Fang, L. P. Tan, C. H. L. Hong, X. Chen, D. T. Leong, Nano Lett. 14, 83–88 (2014)

    Article  Google Scholar 

  • J. D. Trono, K. Mizuno, N. Yusa, T. Matsukawa, K. Yokoyama, M. Uesaka, J. Radiat. Res. 52, 103–109 (2011)

    Article  Google Scholar 

  • J. Turkevich, P. C. Stevenson, J. Hillier, Discuss Faraday Soc. 11, 55–75 (1951)

    Article  Google Scholar 

  • X. Wang, J. Atencia, R. M. Ford, Biotechnol. Bioeng. 112, 896–904 (2015)

    Article  Google Scholar 

  • G. M. Whitesides, E. Ostuni, S. Takayama, X. Y. Jiang, D. E. Ingber, Annu. Rev. Biomed. Eng. 3, 335 (2001)

    Article  Google Scholar 

  • J. N. Yang, H. T. Phan, S. Vaidya, C. J. Murphy, Nano Lett. 13, 2295–2302 (2013)

    Article  Google Scholar 

  • W. Zhang, J. Hughes, Y. Chen, Appl. Environ. Microbiol. 78, 3905–3915 (2012)

    Article  Google Scholar 

  • V. P. Zharov, K. E. Mercer, E. N. Galitovskaya, M. S. Smeltzery, Biophys. J. 90, 619–627 (2006)

    Article  Google Scholar 

  • Y. Zhou, Y. Kong, S. Kundu, J. D. Cirillo, H. Liang, J. Nanobiotechnol. 10, 19 (2012)

    Article  Google Scholar 

  • T. Zhou, M. Yu, B. Zhang, L. Wang, X. Wu, H. Zhou, Y. Du, J. Hao, Y. Tu, C. Chen, T. Wei, Adv. Funct. Mater. 24, 6922–6932 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Department of Biotechnology, Ministry of Science and Technology, Government of India. We would like to thank Professors Amitava Das Gupta and Nandita Das Gupta of MEMS Laboratory, Department of Electrical Engineering, IIT Madras, for the optical lithography fabrication of the microfluidic device used in this work. We also like to thank Professor T. Pradeep of Department of Chemistry and his group, IIT Madras, for kindly helping us in synthesizing AuNPs.

Funding

Contract grant sponsor: Department of Biotechnology (DBT), Government of India.

Grant number: BT/PR12718/MED/32/116/2009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarit K. Das.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Electronic Supplementary Material

ESM 1

(PDF 301 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murugesan, N., Panda, T. & Das, S.K. Effect of gold nanoparticles on thermal gradient generation and thermotaxis of E. coli cells in microfluidic device. Biomed Microdevices 18, 53 (2016). https://doi.org/10.1007/s10544-016-0077-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-016-0077-8

Keywords

Navigation