Skip to main content
Log in

Numerics made easy: solving the Navier–Stokes equation for arbitrary channel cross-sections using Microsoft Excel

Biomedical Microdevices Aims and scope Submit manuscript

Abstract

The fluid mechanics of microfluidics is distinctively simpler than the fluid mechanics of macroscopic systems. In macroscopic systems effects such as non-laminar flow, convection, gravity etc. need to be accounted for all of which can usually be neglected in microfluidic systems. Still, there exists only a very limited selection of channel cross-sections for which the Navier–Stokes equation for pressure-driven Poiseuille flow can be solved analytically. From these equations, velocity profiles as well as flow rates can be calculated. However, whenever a cross-section is not highly symmetric (rectangular, elliptical or circular) the Navier–Stokes equation can usually not be solved analytically. In all of these cases, numerical methods are required. However, in many instances it is not necessary to turn to complex numerical solver packages for deriving, e.g., the velocity profile of a more complex microfluidic channel cross-section. In this paper, a simple spreadsheet analysis tool (here: Microsoft Excel) will be used to implement a simple numerical scheme which allows solving the Navier–Stokes equation for arbitrary channel cross-sections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • S. Khodaparast, N. Borhani, J.R. Thome, Sudden expansions in circular microchannels: flow dynamics and pressure drop. Microfluid. Nanofluid. 17, 561–572 (2014). doi:10.1007/s10404-013-1321-7

    Article  Google Scholar 

  • J. Kim, J. Lee, C. Wu, S. Nam, D. Di Carlo, W. Lee, Inertial focusing in non-rectangular cross-section microchannels and manipulation of accessible focusing positions. Lab Chip 16, 992–1001 (2016)

    Article  Google Scholar 

  • R. Truckenmüller et al., Thermoforming of film‐based biomedical microdevices. Adv. Mater. 23, 1311–1329 (2011)

    Article  Google Scholar 

  • A. Waldbaur, B. Carneiro, P. Hettich, E. Wilhelm, B. Rapp, Computer-aided microfluidics (CAMF): from digital 3D-CAD models to physical structures within a day. Microfluid. Nanofluid. 15, 625–635 (2013). doi:10.1007/s10404-013-1177-x

    Article  Google Scholar 

  • E. Wilhelm, C. Neumann, T. Duttenhofer, L. Pires, B.E. Rapp, Connecting microfluidic chips using a chemically inert, reversible, multichannel chip-to-world-interface. Lab Chip 13, 4343–4351 (2013). doi:10.1039/c3lc50861g

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the Bundesministerium für Bildung und Forschung (BMBF), funding code 03X5527 “Fluoropor”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bastian E. Rapp.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(XLSX 37.9 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Richter, C., Kotz, F., Giselbrecht, S. et al. Numerics made easy: solving the Navier–Stokes equation for arbitrary channel cross-sections using Microsoft Excel. Biomed Microdevices 18, 52 (2016). https://doi.org/10.1007/s10544-016-0070-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-016-0070-2

Keywords

Navigation