Skip to main content
Log in

Microfluidic emulation of mechanical circulatory support device shear-mediated platelet activation

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Thrombosis of ventricular assist devices (VADs) compromises their performance, with associated risks of systemic embolization, stroke, pump stop and possible death. Anti-thrombotic (AT) drugs, utilized to limit thrombosis, are largely dosed empirically, with limited testing of their efficacy. Further, such testing, if performed, typically examines efficacy under static conditions, which is not reflective of actual shear-mediated flow. Here we adopted our previously developed Device Thrombogenicity Emulation methodology to design microfluidic platforms able to emulate representative shear stress profiles of mechanical circulatory support (MCS) devices. Our long-term goal is to utilize these systems for point-of-care (POC) personalized testing of AT efficacy under specific, individual shear profiles. First, we designed different types of microfluidic channels able to replicate sample shear stress patterns observed in MCS devices. Second, we explored the flexibility of microfluidic technology in generating dynamic shear stress profiles by modulating the geometrical features of the channels. Finally, we designed microfluidic channel systems able to emulate the shear stress profiles of two commercial VADs. From CFD analyses, the VAD-emulating microfluidic systems were able to replicate the main characteristics of the shear stress waveforms of the macroscale VADs (i.e., shear stress peaks and duration). Our results establish the basis for development of a lab-on-chip POC system able to perform device-specific and patient-specific platelet activation state assays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Y. Alemu, D. Bluestein, Artif. Organs 31(9), 677–88 (2007)

    Article  Google Scholar 

  • Y. Alemu, G. Girdhar, M. Xenos, J. Sheriff, J. Jesty, S. Einav, D. Bluestein, ASAIO J. 56, 389–396 (2010)

    Article  Google Scholar 

  • J. Apel, R. Paul, S. Klaus, T. Siess, H. Reul, Artif. Organs 25(5), 341–347 (2001)

    Article  Google Scholar 

  • H. Chen, S. Chen, W. Matthaeus, Phys. Rev. A 45, 5339 (1992)

    Article  Google Scholar 

  • W.C. Chiu, G. Girdhar, M. Xenos, Y. Alemu, J.S. Soares, S. Einav, M. Slepian, D. Bluestein, J. Biomech. Eng. 136, 021014 (2014)

    Article  Google Scholar 

  • P.M. Eckman, J. Ranjit, Circulation 125, 3038–3047 (2012)

    Article  Google Scholar 

  • J. Friend, L. Yeo, Biomicrofluidics 4, 026502 (2010)

    Article  Google Scholar 

  • G. Girdhar, D. Bluestein, Biological effects of dynamic shear stress in cardiovascular pathologies and devices. Expert Rev. Med. Devices 5(2), 167–181 (2008)

    Article  Google Scholar 

  • G. Girdhar, M. Xenos, Y. Alemu, W.C. Chiu, B. Lynch, J. Jesty, S. Einav, M.J. Slepian, D. Bluestein, PLoS One 7, e32463 (2012)

    Article  Google Scholar 

  • E. Gutierrez, B.G. Petrich, S.J. Shattil, M.H. Ginsberg, A. Groisman, A. Kasirer-Friede, Lab Chip 8(9), 1486–1495 (2008)

    Article  Google Scholar 

  • J. Jesty, D. Bluestein, Anal. Biochem. 272, 64–70 (1999)

    Article  Google Scholar 

  • J. Jesty, W. Yin, P. Perrotta, D. Bluestein, Platelets 14, 143–149 (2003)

    Article  Google Scholar 

  • R. Li, S.I. Diamond, Thromb. Res. 133, 203–210 (2014)

    Article  Google Scholar 

  • M. Li, D.N. Kub, C.R. Forest, Lab Chip 12, 1335–1343 (2012)

    Google Scholar 

  • M. Li, N.A. Hotaling, D.N. Kub, C.R. Forest, PLoS One 9(1), e82493 (2014)

    Article  Google Scholar 

  • G. Liu, Y. Tian, Y. Kan, Microsyst. Technol. 11, 343–346 (2005)

    Article  Google Scholar 

  • H. Mani, N. Herth, A. Kasper, T. Wendt, G. Schuettfort, Y. Weil, W. Pfeilschifter, B. Linnemann, E. Herrmann, E. Lindhoff-Last, Ther. Drug Monit. 36(5), 624–631 (2014)

    Article  Google Scholar 

  • M.R. Mehra, G.C. Stewart, P.A. Uber, J. Heart Lung Transpl. 33, 1–11 (2014)

    Article  Google Scholar 

  • S.A. Morsi, A.J. Alexander, J. Fluid Mech. 55(2), 193–208 (1972)

    Article  MATH  Google Scholar 

  • M. Nobili, J. Sheriff, U. Morbiducci, A. Redaelli, D. Bluestein, ASAIO J. 54(1), 64–72 (2008)

    Article  Google Scholar 

  • A. Pelosi, J. Sheriff, M. Stevanella, G.B. Fiore, D. Bluestein, A. Redaelli, Biomech. Model. Mechanobiol. 13, 349–361 (2014)

    Article  Google Scholar 

  • R.C. Starling, N. Moazami, S.C. Silvestry, G. Ewald, J.G. Rogers, C. Milano et al., N. Engl. J. Med. 370, 33–40 (2014)

    Article  Google Scholar 

  • G.C. Stewart, M.M. Givetz, Circulation 125, 1304–1315 (2012)

    Article  Google Scholar 

  • A.D. Stroock, S.K.W. Dertinger, A. Ajdari, I. Mezić, H.A. Stone, G.M. Whitesides, Science 295, 647–651 (2002)

    Article  Google Scholar 

  • H.M. van Zijp, A.D. Barendrecht, J. Riegman, J.M.H. Goudsmits, A.M. de Jong, H. Kress, M.W.J. Prins, Biomed. Microdevices 16, 217–227 (2014)

    Article  Google Scholar 

  • S.A. Von Ruden, M.A. Murray, J.L. Grice, A.K. Proebstle, K.J. Kopacek, J. Pharm. Pract. 25(2), 232–249 (2012)

    Article  Google Scholar 

  • G.M. Whitesides, Nature 442, 368–373 (2006)

    Article  Google Scholar 

  • J. Wu, B.M. Yun, A.M. Fallon, S.R. Hanson, C.K. Aidun, A.P. Yoganathan, Ann. Biomed. Eng. 39(2), 897–910 (2011)

  • M. Xenos, G. Girdhar, Y. Alemu, J. Jesty, M. Slepian, S. Einav, D. Bluestein, J. Biomech. 43, 2400–2409 (2010)

    Article  Google Scholar 

  • Y. Xia, G.M. Whitesides, Angew. Chem. Int. Ed. 37, 550–575 (1998)

    Article  Google Scholar 

Download references

Acknowledgments

This publication was made possible by research grant number 2241–2011, from Fondazione Cariplo (AR) and NIH/NIBIB Quantum Award Implementation Phase II-U01 EB012487-0 (DB, MJS). This article does not contain any studies with human participants or animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marvin J. Slepian.

Ethics declarations

Conflict of interest

A. Dimasi, M. Rasponi, J. Sheriff, W. C. Chiu, M. J. Slepian, and D. Bluestein declare that they have no conflict of interest.

Additional information

Marvin J. Slepian and A. Redaelli contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dimasi, A., Rasponi, M., Sheriff, J. et al. Microfluidic emulation of mechanical circulatory support device shear-mediated platelet activation. Biomed Microdevices 17, 117 (2015). https://doi.org/10.1007/s10544-015-0015-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-015-0015-1

Keywords

Navigation