Skip to main content
Log in

Fabrication of carbon nanotube—polyimide composite hollow microneedles for transdermal drug delivery

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

We introduce a novel method for fabricating hollow microneedles for transdermal drug delivery using a composite of vertically-aligned carbon nanotubes and polyimide. Patterned bundles of carbon nanotubes are used as a porous scaffold for defining the microneedle geometry. Polyimide resin is wicked through the carbon nanotube scaffold to reinforce the structure and provide the prerequisite strength for achieving skin penetration. The high aspect ratio and bottom-up assembly of carbon nanotubes allow the structure of the microneedles to be created in a single step of nanotube fabrication, providing a simple, scalable method for producing hollow microneedles. To demonstrate the utility of these microneedles, liquid delivery experiments are performed. Successful delivery of aqueous methylene blue dye into both hydrogel and swine skin in vitro is demonstrated. Electron microscopy images of the microneedles taken after delivery confirm that the microneedles do not sustain any structural damage during the delivery process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • W.G. Ali, G. Nagib, Adv. Mater. Res. 201, 2399 (2011)

    Article  Google Scholar 

  • A.I. Aria, M. Gharib, Langmuir 27, 9005 (2011)

    Article  Google Scholar 

  • A.I. Aria, M. Gharib, Langmuir 30, 6780 (2014)

    Article  Google Scholar 

  • A. I. Aria and M. Gharib, J. Vis. Exp. e50378 (2013).

  • L. Ci, J. Suhr, V. Pushparaj, X. Zhang, P.M. Ajayan, Nano Lett. 8, 2762 (2008)

    Article  Google Scholar 

  • M. Cormier, B. Johnson, M. Ameri, K. Nyam, L. Libiran, D.D. Zhang, P. Daddona, J. Control. Release 97, 503 (2004)

    Article  Google Scholar 

  • S.P. Davis, B.J. Landis, Z.H. Adams, M.G. Allen, M.R. Prausnitz, J. Biomech. 37, 1155 (2004)

    Article  Google Scholar 

  • M. De Volder, S.H. Tawfick, S.J. Park, D. Copic, Z. Zhao, W. Lu, A.J. Hart, Adv. Mater. 22, 4384 (2010)

    Article  Google Scholar 

  • M. De Volder, S.H. Tawfick, R.H. Baughman, A.J. Hart, Science 339, 535 (2013)

    Article  Google Scholar 

  • S. Doddaballapur, J. Cutan. Aesthetic Surg. 2, 110 (2009)

    Article  Google Scholar 

  • H.J.G.E. Gardeniers, R. Luttge, E.J.W. Berenschot, M.J. De Boer, S.Y. Yeshurun, M. Hefetz, R. van’t Oever, A. van den Berg, Microelectromech. Syst. J. Of 12, 855 (2003)

    Article  Google Scholar 

  • U.O. Häfeli, A. Mokhtari, D. Liepmann, B. Stoeber, Biomed. Microdevices 11, 943 (2009)

    Article  Google Scholar 

  • M.I. Haq, E. Smith, D.N. John, M. Kalavala, C. Edwards, A. Anstey, A. Morrissey, J.C. Birchall, Biomed. Microdevices 11, 35 (2009)

    Article  Google Scholar 

  • X. Huang, J.J. Zhou, E. Sansom, M. Gharib, S.C. Haur, Nanotechnology 18, 305301 (2007)

    Article  Google Scholar 

  • X. Jiang, Y. Bin, M. Matsuo, Polymer 46, 7418 (2005)

    Article  Google Scholar 

  • Y.J. Jung, S. Kar, S. Talapatra, C. Soldano, G. Viswanathan, X. Li, Z. Yao, F.S. Ou, A. Avadhanula, R. Vajtai, S. Curran, O. Nalamasu, P.M. Ajayan, Nano Lett. 6, 413 (2006)

    Article  Google Scholar 

  • Y.-C. Kim, J.-H. Park, M.R. Prausnitz, Adv. Drug Deliv. Rev. 64, 1547 (2012)

    Article  Google Scholar 

  • A.V. Krasheninnikov, F. Banhart, Nat. Mater. 6, 723 (2007)

    Article  Google Scholar 

  • J.W. Lee, S.-O. Choi, E.I. Felner, M.R. Prausnitz, Small 7, 531 (2011)

    Article  Google Scholar 

  • B. J. Lyon, A. I. Aria, and M. Gharib, in MRS Proc. (Cambridge Univ Press, 2013).

  • B. Ma, S. Liu, Z. Gan, G. Liu, X. Cai, H. Zhang, Z. Yang, Microfluid. Nanofluid. 2, 417 (2006)

    Article  Google Scholar 

  • J.-H. Park, M.G. Allen, M.R. Prausnitz, J. Control. Release 104, 51 (2005)

    Article  Google Scholar 

  • M.R. Prausnitz, S. Mitragotri, R. Langer, Nat. Rev. Drug Discov. 3, 115 (2004)

    Article  Google Scholar 

  • N. Roxhed, T.C. Gasser, P. Griss, G.A. Holzapfel, G. Stemme, Microelectromech. Syst. J. Of 16, 1429 (2007)

    Article  Google Scholar 

  • S.P. Sullivan, D.G. Koutsonanos, M. del Pilar Martin, J.W. Lee, V. Zarnitsyn, S.-O. Choi, N. Murthy, R.W. Compans, I. Skountzou, M.R. Prausnitz, Nat. Med. 16, 915 (2010)

    Article  Google Scholar 

  • K.B.K. Teo, M. Chhowalla, G.A.J. Amaratunga, W.I. Milne, D.G. Hasko, G. Pirio, P. Legagneux, F. Wyczisk, D. Pribat, Appl. Phys. Lett. 79, 1534 (2001)

    Article  Google Scholar 

  • F.J. Verbaan, S.M. Bal, D.J. Van den Berg, J.A. Dijksman, M. Van Hecke, H. Verpoorten, A. van den Berg, R. Luttge, J.A. Bouwstra, J. Control. Release 128, 80 (2008)

    Article  Google Scholar 

  • P.M. Wang, M. Cornwell, J. Hill, M.R. Prausnitz, J. Invest. Dermatol. 126, 1080 (2006)

    Article  Google Scholar 

  • L.M. Yu, F.E.H. Tay, D.G. Guo, L. Xu, K.L. Yap, Sens. Actuators Phys. 151, 17 (2009)

    Article  Google Scholar 

  • W. Yuan, J. Che, M.B. Chan-Park, Chem. Mater. 23, 4149 (2011)

    Article  Google Scholar 

  • J.J. Zhou, F. Noca, M. Gharib, Nanotechnology 17, 4845 (2006)

    Article  Google Scholar 

  • C.-P. Zhou, Y.-L. Liu, H.-L. Wang, P.-X. Zhang, J.-L. Zhang, Int. J. Pharm. 392, 127 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by ZCube s.r.l. The authors acknowledge the support and infrastructure provided by the Charyk Laboratory for Bio-Inspired Design, Kavli Nanoscience Institute, and the Geology and Planetary Sciences Analytical Facility of the California Institute of Technology. The authors also acknowledge Melissa Cronin, Neeru Ravi, and Sreenivas Appasani, for their assistance in fabricating carbon nanotubes and skin patches.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Gharib.

Additional information

Bradley J. Lyon and Adrianus I. Aria are contributed equally to this work

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 233 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyon, B.J., Aria, A.I. & Gharib, M. Fabrication of carbon nanotube—polyimide composite hollow microneedles for transdermal drug delivery. Biomed Microdevices 16, 879–886 (2014). https://doi.org/10.1007/s10544-014-9892-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-014-9892-y

Keywords

Navigation