Skip to main content
Log in

Well-plate mechanical confinement platform for studies of mechanical mutagenesis

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Limited space for cell division, perhaps similar to the compressed microenvironment of a growing tumor, has been shown to induce phenotypic and karyotypic changes to a cell during mitosis. To expand understanding of this missegregation of chromosomes in aberrant multi-daughter or asymmetric cell divisions, we present a simple technique for subjecting mammalian cells to adjustable levels of confinement which allows subsequent interrogation of intracellular molecular components using high resolution confocal imaging. PDMS micropatterned confinement structures of subcellular height with neighboring taller media reservoir channels were secured on top of confluent cells with a custom compression well-plate system. The system improved ease of use over previous devices since confined cells could be initially grown on glass coverslips in a 12-well plate, and subsequently be imaged by high resolution confocal imaging, or during compression by live cell imaging. Live cell imaging showed a significant increase in abnormal divisions of confined cells across three different cell lines (HeLa, A375, and A549). Immunofluoresecence stains revealed a significant increase in cell diameter and chromosome area of confined cells, but no significant increase in centrosome-centromere distance upon division when compared to unconfined cells. The developed system could open up studies more broadly on confinement effects on mitotic processes, and increase the throughput of such studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • G.B. Alsop, D. Zhang, J. Cell Biol. 162, 383 (2003)

    Article  Google Scholar 

  • C. Antonio, I. Ferby, H. Wilhelm, M. Jones, E. Karsenti, A.R. Nebreda, I. Vernos, Cell 102, 425 (2000)

    Article  Google Scholar 

  • F. Borel, O.D. Lohez, F.B. Lacroix, R.L. Margolis, Proc. Natl. Acad. Sci. U. S. A. 99, 9819 (2002)

    Article  Google Scholar 

  • D.R. Burgess, F. Chang, Trends Cell Biol. 15, 156 (2005)

    Article  Google Scholar 

  • K.F. DeLuca, S.M.A. Lens, J.G. DeLuca, J. Cell Sci. 124, 622 (2011)

    Article  Google Scholar 

  • C. Ditchfield, V.L. Johnson, A. Tighe, R. Ellston, C. Haworth, T. Johnson, A. Mortlock, N. Keen, S.S. Taylor, J. Cell Biol. 161, 267 (2003)

    Article  Google Scholar 

  • N.J. Ganem, S.A. Godinho, D. Pellman, Nature 460, 278 (2009)

    Article  Google Scholar 

  • M.C. Good, M.D. Vahey, A. Skandarajah, D.A. Fletcher, R. Heald, Science 342, 856 (2013)

    Article  Google Scholar 

  • D.J. Gordon, B. Resio, D. Pellman, Nat. Rev. Genet. 13, 189 (2012)

    Google Scholar 

  • J. Hazel, K. Krutkramelis, P. Mooney, M. Tomschik, K. Gerow, J. Oakey, J.C. Gatlin, Science 342, 853 (2013)

    Article  Google Scholar 

  • M. Hetzer, O.J. Gruss, I.W. Mattaj, Nat. Cell Biol. 4, E177 (2002)

    Article  Google Scholar 

  • H.M.J. Hut, W. Lemstra, E.H. Blaauw, G.W.A. Van Cappellen, H.H. Kampinga, O.C.M. Sibon, Mol. Biol. Cell 14, 1993 (2003)

    Article  Google Scholar 

  • T. Itabashi, Y. Terada, K. Kuwana, T. Kan, I. Shimoyama, Proc. Natl. Acad. Sci. U. S. A. 109, 7320 (2012)

    Article  Google Scholar 

  • F. Jiang, N.P. Caraway, R. Li, R.L. Katz, Oncogene 24, 3409 (2005)

    Article  Google Scholar 

  • A. Krämer, B. Maier, J. Bartek, Mol. Oncol. 5, 324 (2011)

    Article  Google Scholar 

  • O.M. Lancaster, M. Le Berre, A. Dimitracopoulos, D. Bonazzi, E. Zlotek-Zlotkiewicz, R. Picone, T. Duke, M. Piel, B. Baum, Dev. Cell 25, 270 (2013)

    Article  Google Scholar 

  • M. Le Berre, J. Aubertin, M. Piel, Integr. Biol. 4, 1406 (2012)

    Article  Google Scholar 

  • C.L. Limoli, M.I. Kaplan, E. Giedzinski, W.F. Morgan, Free Radic. Biol. Med. 31, 10 (2001)

    Article  Google Scholar 

  • W.L. Lingle, S.L. Barrett, V.C. Negron, A.B. D’Assoro, K. Boeneman, W. Liu, C.M. Whitehead, C. Reynolds, J.L. Salisbury, Proc. Natl. Acad. Sci. U. S. A. 99, 1978 (2002)

    Article  Google Scholar 

  • D. Liu, G. Vader, M.J.M. Vromans, M.A. Lampson, S.M.A. Lens, Science 323, 1350 (2009)

    Article  Google Scholar 

  • X. Lu, Y. Kang, Cancer Res. 69, 8536 (2009)

    Article  Google Scholar 

  • C. Luk, M.S. Tsao, J. Bayani, F. Shepherd, J.A. Squire, Cancer Genet. Cytogenet. 125, 87 (2001)

    Article  Google Scholar 

  • M. Macville, E. Schröck, H. Padilla-Nash, C. Keck, B.M. Ghadimi, D. Zimonjic, N. Popescu, T. Ried, Cancer Res. 59, 141 (1999)

    Google Scholar 

  • L. Menendez, B.B. Benigno, J.F. Mcdonald, Mol. Cancer 3, 1 (2004)

    Article  Google Scholar 

  • M. Nishigaki, K. Aoyagi, I. Danjoh, Cancer Res. 65, 2115 (2005)

    Article  Google Scholar 

  • G.A. Pihan, J. Wallace, Y. Zhou, P. Carcinomas, Cancer Res. 63, 1398 (2003)

    Google Scholar 

  • C.L. Rieder, E.D. Salmon, J. Cell Biol. 124, 223 (1994)

    Article  Google Scholar 

  • I. Sánchez, L. Goya, A.K. Vallerga, G.L. Firestone, Cell Growth Differ. 4, 215 (1993)

    Google Scholar 

  • M.P. Stewart, J. Helenius, Y. Toyoda, S.P. Ramanathan, D.J. Muller, A.A. Hyman, Nature 469, 226 (2011)

    Article  Google Scholar 

  • M. Théry, V. Racine, A. Pépin, M. Piel, Y. Chen, J.-B. Sibarita, M. Bornens, Nat. Cell Biol. 7, 947 (2005)

    Article  Google Scholar 

  • H.T.K. Tse, W.M. Weaver, D. Di Carlo, PLoS One 7, e38986 (2012)

    Article  Google Scholar 

  • P. Tseng, J.W. Judy, D. Di Carlo, Nat. Methods 9, 1113 (2012)

    Article  Google Scholar 

  • S.P. Wheatley, Y. Wang, J. Cell Biol. 135, 981 (1996)

    Article  Google Scholar 

  • A.S. Wilson, B.E. Power, P.L. Molloy, Biochim. Biophys. Acta 1775, 138 (2007)

    Google Scholar 

  • M. Wühr, Y. Chen, S. Dumont, A.C. Groen, D.J. Needleman, A. Salic, T.J. Mitchison, Curr. Biol. 18, 1256 (2008)

    Article  Google Scholar 

  • S. Yasuda, T. Oceguera-Yanez, F. Kato, M. Okamoto, Y. Yonemura, S. Terada, T. Ishizaki, N. Shuh, Nature 428, 767 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Yeganeh Amini, Coleman Murray, Dr. Matthew Schibler, and Nikhil Kalluri for their assistance in this work. Confocal laser scanning microscopy was performed at the CNSI Advanced Light Microscopy/Spectroscopy Shared Resource Facility at UCLA, supported with funding from NIH-NCRR shared resources grant (CJX1-443835-WS-29646) and NSF Major Research Instrumentation grant (CHE-0722519).

Ethics statement

The manuscript does not contain clinical studies or patient data. The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Di Carlo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

(PDF 1.27 mb)

Online Resource 2

(AVI 52 kb)

Online Resource 3

(AVI 28 kb)

Online Resource 4

(AVI 1849 kb)

Online Resource 5

(AVI 522 kb)

Online Resource 6

(PDF 5.35 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kittur, H., Weaver, W. & Di Carlo, D. Well-plate mechanical confinement platform for studies of mechanical mutagenesis. Biomed Microdevices 16, 439–447 (2014). https://doi.org/10.1007/s10544-014-9846-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-014-9846-4

Keywords

Navigation