Skip to main content
Log in

Analytical study of a microfludic DNA amplification chip using water cooling effect

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

A novel continuous-flow polymerase chain reaction (PCR) chip has been analyzed in our work. Two temperature zones are controlled by two external controllers and the other temperature zone at the chip center is controlled by the flow rate of the fluid inside a channel under the glass chip. By employing a water cooling channel at the chip center, the sequence of denaturation, annealing, and extension can be created due to the forced convection effect. The required annealing temperature of PCR less than 313 K can also be demonstrated in this chip. The Poly(methyl methacrylate) (PMMA) cooling channel with the thin aluminum cover is utilized to enhance the temperature uniformity. The size of this chip is 76 mm × 26 mm × 3 mm. This device represents the first demonstration of water cooling thermocycling within continuous-flow PCR microfluidics. The commercial software CFD-ACE+TM is utilized to determine the distances between the heating assemblies within the chip. We investigate the influences of various chip materials, operational parameters of the cooling channel and geometric parameters of the chip on the temperature uniformity on the chip surface. Concerning the temperature uniformity of the working zones and the lowest temperature at the annealing zone, the air gap spacing of 1 mm and the cooling channel thicknesses of 1 mm of the PMMA channel with an aluminum cover are recommended in our design. The hydrophobic surface of the PDMS channel was modified by filling it with 20 % Tween 20 solution and then adding bovine serum albumin (BSA) solution to the PCR mixture. DNA fragments with different lengths (372 bp and 478 bp) are successfully amplified with the device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • J.J. Chen, Y.T. Yang, Modeling and experiment of shuttling speed effects on the OSTRYCH. Appl. Therm. Eng. 31, 2797–2807 (2011)

    Article  Google Scholar 

  • P.C. Chen, D.E. Nikitopoulos, S.A. Soper, M.C. Murphy, Temperature distribution effects on micro-CFPCR performance. Biomed. Microdevices 10, 141–152 (2008)

    Article  Google Scholar 

  • K.H. Chung, S.H. Park, Y.H. Choi, A palmtop PCR system with a disposable polymer chip operated by the thermosiphon effect. Lab Chip 10, 202–210 (2010)

    Article  Google Scholar 

  • T.H. Fang, N. Ramalingam, D. Xian-Dui, T.S. Ngin, Z. Xianting, A.T. Lai Kuan, E.Y. Peng Huat, G. Hai-Qing, Real-time PCR microfluidic devices with concurrent electrochemical detection. Biosens. Bioelectron. 24, 2131–2136 (2009)

    Article  Google Scholar 

  • J. Felbel, A. Reichert, M. Kielpinski, M. Urban, T. Henkel, N. Häfner, M. Dürst, J. Weber, Reverse transcription-polymerase chain reaction (RT-PCR) in flow-through micro-reactors: thermal and fluidic concepts. Chem. Eng. J. 135S, S298–S302 (2008)

    Article  Google Scholar 

  • Y. Fuchiwaki, H. Nagai, M. Saito, E. Tamiya, Ultra-rapid flow-through polymerase chain reaction microfluidics using vapor pressure. Biosens. Bioelectron. 27, 88–94 (2011)

    Article  Google Scholar 

  • M. Hashimoto, P.C. Chen, M.W. Mitchell, D.E. Nikitopoulos, S.A. Soper, M.C. Murphy, Rapid PCR in a continuous flow device. Lab Chip 4, 638–645 (2004)

    Article  Google Scholar 

  • J.P. Holman, Heat Transfer, 10th edn. (McGraw-Hill, New York, 2009)

    Google Scholar 

  • T.M. Hsieh, C.H. Luo, F.C. Huang, J.H. Wang, L.J. Chien, G.B. Lee, Enhancement of thermal uniformity for a microthermal cycler and its application for polymerase chain reaction. Sensors Actuators B Chem. 130, 848–856 (2008)

    Article  Google Scholar 

  • J.A. Kim, J.Y. Lee, S. Seong, S.H. Cha, S.H. Lee, J.J. Kim, T.H. Park, Fabrication and characterization of a PDMS-glass hybrid continuous-flow PCR chip. Biochem. Eng. J. 29, 91–97 (2006)

    Article  Google Scholar 

  • M.U. Kopp, A.J.D. Mello, A. Manz, Chemical amplification: continuous-flow PCR on a chip. Science 280, 1046–1048 (1998)

    Article  Google Scholar 

  • Y. Li, C. Zhang, D. Xing, Fast identification of foodborne pathogenic viruses using continuous-flow reverse transcription-PCR with fluorescence detection. Microfluid. Nanofluid. 10, 367–380 (2011)

    Article  Google Scholar 

  • D.P. Manage, Y.C. Morrissey, A.J. Stickel, J. Lauzon, A. Atrazhev, J.P. Acker, L.M. Pilarski, On-chip PCR amplification of genomic and viral templates in unprocessed whole blood. Microfluid. Nanofluid. 10, 697–702 (2011)

    Article  Google Scholar 

  • S. Mohr, Y.H. Zhang, A. Macaskill, P.J.R. Day, R.W. Barber, N.J. Goddard, D.R. Emerson, P.R. Fielden, Numerical and experimental study of a droplet-based PCR chip. Microfluid. Nanofluid. 3, 611–621 (2007)

    Article  Google Scholar 

  • T. Nakayama, H.M. Hiep, S. Furui, Y. Yonezawa, M. Saito, Y. Takamura, E. Tamiya, An optimal design method for preventing air bubbles in high-temperature microfluidic devices. Anal. Bioanal. Chem. 396, 457–464 (2010)

    Article  Google Scholar 

  • M.A. Northrup, M.T. Ching, R.M. White, R.T. Wltson (1993) DNA amplification in a microfabricated reaction chamber. In: Proceeding of the 7th international conference of solid state sensors and actuators, Yokohama, Japan, pp 924–926

  • P.J. Obeid, T.K. Christopoulos, Continuous-flow DNA and RNA amplification chip combined with laser-induced fluorescence detection. Anal. Chim. Acta 494, 1–9 (2003)

    Article  Google Scholar 

  • X. Qiu, M.G. Mauk, D. Chen, C. Liu, H.H. Bau, A large volume, portable, real-time PCR reactor. Lab Chip 10, 3170–3177 (2010)

    Article  Google Scholar 

  • R.K. Saiki, S. Scharf, F. Faloona, K.B. Mullis, G.T. Horn, H.A. Erlich, N. Arnheim, Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230, 1950–1954 (1985)

    Article  Google Scholar 

  • I. Schneegaß, R. Bräutigam, J.M. Köhler, Miniaturized flow-through PCR with different template types in a silicon chip thermocycler. Lab Chip 1, 42–49 (2001)

    Article  Google Scholar 

  • C.Y. Shih, Y. Chen, Y.C. Tai, Parylene-strengthened thermal isolation technology for microfluidic system-on-chip applications. Sensors Actuators A Phys. 126, 270–276 (2006)

    Article  Google Scholar 

  • K. Sun, A. Yamaguchi, Y. Ishida, S. Matsuo, H. Misawa, A heater-integrated transparent microchannel chip for continuous-flow PCR. Sensors Actuators B Chem. 84, 283–289 (2002)

    Article  Google Scholar 

  • W. Wang, Z.X. Li, R. Luo, S.H. Lü, A.D. Xu, Y.J. Yang, Droplet-based micro oscillating-flow PCR chip. J. Micromech. Microeng. 15, 1369–1377 (2005)

    Article  Google Scholar 

  • C.T. Wittwer, D.J. Garling, Rapid cycle DNA amplification: time and temperature optimization. Biotechniques 10, 76–83 (1991)

    Google Scholar 

  • M. Yang, R. Pal, M.A. Burns, Cost-effective thermal isolation techniques for use on microfabricated DNA amplification and analysis devices. J. Micromech. Microeng. 15, 221–230 (2005)

    Article  Google Scholar 

  • L. Yao, B. Liu, T. Chen, S. Liu, T. Zuo, Micro flow-through PCR in a PMMA chip fabricated by KrF excimer laser. Biomed. Microdevices 7, 253–257 (2005)

    Article  Google Scholar 

  • C. Yu, W. Liang, I. Kuan, C. Wei, W. Gu, Fabrication and characterization of a flow-through PCR device with integrated chromium resistive heaters. J. Chin. Inst. Chem. Eng. 38, 333–339 (2007)

    Article  Google Scholar 

  • C. Zhang, D. Xing, Microfluidic gradient PCR (MG-PCR): a new method for microfluidic DNA amplification. Biomed. Microdevices 12, 1–12 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National Science Council of the Republic of China for financially supporting this research under Contract No. NSC 100-2221-E-020-024-. Daryl Switak is appreciated for his editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyh Jian Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J.J., Shen, C.M. & Ko, Y.W. Analytical study of a microfludic DNA amplification chip using water cooling effect. Biomed Microdevices 15, 261–278 (2013). https://doi.org/10.1007/s10544-012-9728-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-012-9728-6

Keywords

Navigation