Skip to main content
Log in

Culture of primary rat hippocampal neurons: design, analysis, and optimization of a microfluidic device for cell seeding, coherent growth, and solute delivery

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

We present the design, analysis, construction, and culture results of a microfluidic device for the segregation and chemical stimulation of primary rat hippocampal neurons. Our device is designed to achieve spatio-temporal solute delivery to discrete sections of neurons with mitigated mechanical stress. We implement a geometric guidance technique to direct axonal processes of the neurons into specific areas of the device to achieve solute segregation along routed cells. Using physicochemical modeling, we predict flows, concentration profiles, and mechanical stresses within pertiment sections of the device. We demonstrate cell viability and growth within the closed device over a period of 11 days. Additionally, our modeling methodology may be generalized and applied to other device geometries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • G. Banker, K. Goslin (eds.), Culturing nerve cells (MIT Press, 1998)

  • R. B. Campenot, Local Control of Neurite Development by Nerve Growth-Factor. P Nat. Acad. Sci. USA 74(10), 4516–4519 (1977)

    Article  Google Scholar 

  • R.B. Campenot, Development of sympathetic neurons in compartmentalized cultures 1. local-control of neurite growth by nerve growth-factor. Dev. Biol. 93(1), 1–12 (1982a)

    Article  Google Scholar 

  • R.B. Campenot, Development of sympathetic neurons in compartmentalized cultures 2. local-control of neurite survival by nerve growth-factor. Dev. Biol. 93(1), 13–21 (1982b)

    Article  Google Scholar 

  • K.J. De Vos, A.J. Grierson, S. Ackerley, C.C. Miller, Role of axonal transport in neurodegenerative diseases. Annu. Rev. Neurosci. 31(1), 151–173 (2008)

    Article  Google Scholar 

  • P.G. Gross, E.P. Kartalov, A. Scherer, L.P. Weiner, Applications of microfluidics for neuronal studies. J. Neurol. Sci. 252(2), 135–143 (2007)

    Article  Google Scholar 

  • C. James, R. Davis, M. Meyer, A. Turner, S. Turner, G. Withers, L. Kam, G. Banker, H. Craighead, M. Issacson, J. Turner, W. Shain, Aligned microcontact printing of micrometer-scale poly-l-lysine structures for controlled growth of cultured neurons on planar microelectrode arrays. IEEE Trans. Biomed. Eng. 47(1), 17–21 (2000)

    Article  Google Scholar 

  • S. Kaech, G. Banker, Culturing hippocampal neurons. Nat. Protoc. 1(5), 2406–2415 (2006)

    Article  Google Scholar 

  • S. Kaech, C.F. Huang, G. Banker, Short-term high-resolution imaging of developing hippocampal neurons in culture. Cold Spring Harb. Protoc. (2012). doi:10.1101/pdb.prot068247

  • T.M. Keenan, A. Folch, Biomolecular gradients in cell culture systems. Lab Chip 8, 34–57 (2008)

    Article  Google Scholar 

  • B.J. Kirby, Micro- and Nanoscale Fluid Mechanics Transport in Microfluidic Devices (Cambridge University Press, 2011)

  • D. Kleinfeld, K. Kahler, P. Hockberger, Controlled outgrowth of dissociated neurons on patterned substrates. J. Neurosci. 8(11), 4098–4120 (1988)

    Google Scholar 

  • A. Kunze, R. Meissner, S. Brando, P. Renaud, Co-pathological connected primary neurons in a microfluidic device for alzheimer studies. Biotechnol. Bioeng. 108(9), 2241–2245 (2011)

    Article  Google Scholar 

  • S.P. Lacour, R. Atta, J.J. FitzGerald, M. Blamire, E. Tarte, J. Fawcett, Polyimide micro-channel arrays for peripheral nerve regenerative implants. Sens. Actuators, A, Phys. 147(2), 456–463 (2008)

    Article  Google Scholar 

  • I. Meyvantsson, D.J. Beebe, Cell culture models in microfluidic systems. Annu. Rev. Anal. Chem. 1(1), 423–449 (2008)

    Article  Google Scholar 

  • L.J. Millet, M.E. Stewart, J.V. Sweedler, R.G. Nuzzo, M.U. Gillette, Microfluidic devices for culturing primary mammalian neurons at low densities. Lab Chip 7, 987–994 (2007)

    Article  Google Scholar 

  • J. Monahan, A.A. Gewirth, R.G. Nuzzo, A method for filling complex polymeric microfluidic devices and arrays. Anal. Chem. 73(13), 3193–3197 (2001)

    Article  Google Scholar 

  • M.P. Murphy, How mitochondria produce reactive oxygen species. Biochem. J. 417, 1–13 (2009)

    Article  Google Scholar 

  • A.A. Oliva, C.D. James, C.E. Kingman, H.G. Craighead, G.A. Banker, Patterning axonal guidance molecules using a novel strategy for microcontact printing. Neurochem. Res. 28, 1639–1648 (2003)

    Article  Google Scholar 

  • T.M. Pearce, J.C. Williams, Microtechnology: Meet neurobiology. Lab Chip 7, 30–40 (2007)

    Article  Google Scholar 

  • J.M. Peyrin, B. Deleglise, L. Saias, M. Vignes, P. Gougis, S. Magnifico, S. Betuing, M. Pietri, J. Caboche, P. Vanhoutte, J.L. Viovy, B. Brugg, Axon diodes for the reconstruction of oriented neuronal networks in microfluidic chambers. Lab on a Chip 11(21), 3663–3673 (2011)

    Article  Google Scholar 

  • R.B. Schoch, J. Han, P. Renaud, Transport phenomena in nanofluidics. Rev. Mod. Phys. 80, 839–883 (2008)

    Article  Google Scholar 

  • R. Selvatici, M. Previati, S. Marino, L. Marani, S. Falzarano, I. Lanzoni, A. Siniscalchi, Sodium azide induced neuronal damage in vitro: evidence for non-apoptotic cell death. Neurochem. Res. 34, 909–916 (2009)

    Article  Google Scholar 

  • T.M. Squires, S.R. Quake, Microfluidics: Fluid physics at the nanoliter scale. Rev. Mod. Phys. 77, 977–1026 (2005)

    Article  Google Scholar 

  • C. Szabo, H. Ischiropoulos, R. Radi, Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nat. Rev., Drug Discov. 6(8), 662–680 (2007)

    Article  Google Scholar 

  • A.M. Taylor, M. Blurton-Jones, S.W. Rhee, D.H. Cribbs, C.W. Cotman, N.L. Jeon, A microfluidic culture platform for cns axonal injury, regeneration and transport. Nat. Methods 2(8), 599–605 (2005)

    Article  Google Scholar 

  • A.M. Taylor, S.W. Rhee, C.H. Tu, D.H. Cribbs, C.W. Cotman, N.L. Jeon, Microfluidic multicompartment device for neuroscience research. Langmuir 19(5), 1551–1556 (2003)

    Article  Google Scholar 

  • D. Wallace, A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu. Rev. Genet. 39, 359–407 (2005)

    Article  Google Scholar 

  • C.J. Wang, X. Li, B. Lin, S. Shim, G.l. Ming, A. Levchenko, A microfluidics-based turning assay reveals complex growth cone responses to integrated gradients of substrate-bound ecm molecules and diffusible guidance cues. Lab Chip 8, 227–237 (2008)

    Article  Google Scholar 

  • J. Wang, L. Ren, L. Li, W. Liu, J. Zhou, W. Yu, D. Tong, S. Chen, Microfluidics: a new cosset for neurobiology. Lab Chip 9, 644–652 (2009)

    Article  Google Scholar 

  • Y. Xia, G.M. Whitesides, Soft lithography. Annu. Rev. Mater. Sci. 28(1), 153–184 (1998)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Barbara Smoody for her expert technical assistance, and acknowledge funding from the National Multiple Sclerosis Society (MS Center Grant CA 1055-A-3); CF is supported by a postdoctoral fellowship from the National Multiple Sclerosis Society. ACB is supported by a Graduate Research Fellowship from the National Science Foundation. This work is based upon work supported by the STC Program of the National Science Foundation under Agreement No. ECS-9876771, and was performed in part at the Cornell NanoScale Facility, which is supported by the National Science Foundation (Grant ECS-0335765).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian J. Kirby.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barbati, A.C., Fang, C., Banker, G.A. et al. Culture of primary rat hippocampal neurons: design, analysis, and optimization of a microfluidic device for cell seeding, coherent growth, and solute delivery. Biomed Microdevices 15, 97–108 (2013). https://doi.org/10.1007/s10544-012-9691-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-012-9691-2

Keywords

Navigation