Skip to main content
Log in

An implantable optical blood pressure sensor based on pulse transit time

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

An implantable sensor system for long-term monitoring of blood pressure is realized by taking advantage of the correlation between pulse transit time and blood pressure. The highly integrated implantable sensor module, fabricated using MEMS technologies, uses 8 light emitting diodes (LEDs) and a photodetector on chip level. The sensor is applied to large blood vessels, such as the carotid or femoral arteries, and allows extravascular measurement of highly-resolved photoplethysmograms. In addition, spectrophotometric approaches allow measurement of hemoglobin derivatives. For the calibration of blood pressure measurements, the sensor system has been successfully implemented in animal models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • J. Allen, Photoplethysmography and its application in clinical physiological measurement. Physiol. Meas. 28(3), 1–39 (2007)

    Article  Google Scholar 

  • S.J. Barker, J.J. Badal, The measurement of dyshemoglobins and total hemoglobin by pulse oximetry. Curr. Opin. Anaesthesiol. 21(6), 805–810 (2008)

    Article  Google Scholar 

  • S. Bartsch, D. Ostojic, H. Schmalgemeier, T. Bitter, N. Westerheide, S. Eckert, D. Horstkotte, O. Oldenburg, Validation of continuous blood pressure measurements by pulse transit time: a comparison with invasive measurements in a cardiac intensive care unit. Dtsch. Med. Wochenschr. 135(48), 2406–2412 (2010)

    Article  Google Scholar 

  • J.M. Bland, D.G. Altman, Comparing methods of measurement: why plotting difference against standard method is misleading. Lancet 346(8982), 1085–1087 (1995)

    Article  Google Scholar 

  • J.M. Bland, D.G. Altman, Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1(8476), 307–310 (1986)

    Article  Google Scholar 

  • R. Coifman, D. Donoho, Translation-invariant de-noising. Wavelets Stat., Springer Lect. Notes Stat. 103, 125–150 (1995)

    Article  Google Scholar 

  • K.R. Coombes, S. Tsavachidis, J.S. Morris, K. Baggerly, M.C. Hung, H.M. Kuerer, Improved peak detection and quantification of mass spectrometry data acquired from surface-enhanced laser desorption and ionization by denoising spectra with the undecimated discrete wavelet transform. Proteomics 5(16), 4107–4117 (2005)

    Article  Google Scholar 

  • D. Donoho, De-noising by soft-thresholding. IEEE Trans. Inf. Theory. 41(3), 613–627 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • M.J. Drinnan, J. Allen, A. Murray, Relation between heart rate and pulse transit time during paced respiration. Physiol. Meas. 22(3), 425–432 (2001)

    Article  Google Scholar 

  • P. Einbrodt, Über den Einfluß der Atembewegung auf Herzschlag und Blutdruck. Sber. Akad. Wiss. Wien; Math. Nat. Kl., 2. Abt., 40 (1860)

  • J. Fiala, R. Gehrke, N. Weber, P. Bingger, H. Zappe, A. Seifert, Implantable optical sensor for continuous monitoring of various hemoglobin derivatives and tissue perfusion. IEEE Sensors 1971–1974 (2009). doi:10.1109/ICSENS.2009.5398324

  • J. Fiala, P. Bingger, K. Foerster, C. Heilmann, F. Beyersdorf, H. Zappe, A. Seifert, Implantable sensor for blood pressure determination via pulse transit time. IEEE Sensors 1226–1229 (2010). doi:10.1109/ICSENS.2010.5690619

  • J. Fortin, W. Marte, R. Grüllenberger, A. Hacker, W. Habenbacher, A. Heller, C. Wagner, P. Wach, F. Skrabal, Continuous non-invasive blood pressure monitoring using concentrically interlocking control loops. Comput. Biol. Med. 36(9), 941–957 (2006)

    Article  Google Scholar 

  • R. Furlan, S. Guzzetti, W. Crivellaro, S. Dassi, M. Tinelli, G. Baselli, S. Cerutti, F. Lombardi, M. Pagani, A. Malliani, Continuous 24-hour assessment of the neural regulation of systemic arterial pressure and RR variabilities in ambulant subjects. Circulation 81(2), 537–547 (1990)

    Article  Google Scholar 

  • B. Gribbin, A. Steptoe, P. Sleight, Pulse wave velocity as a measure of blood pressure change. Psychophysiology 13(1), 86–90 (1976)

    Article  Google Scholar 

  • C. Jeleazcov, L. Krajinovic, T. Münster, T. Birkholz, R. Fried, J. Schüttler, J. Fechner, Precision and accuracy of a new device (CNAPTM) for continuous non-invasive arterial pressure monitoring: assessment during general anaesthesia. Br. J. Anaesth. 105(3), 264–272 (2010)

    Article  Google Scholar 

  • A. Johansson, C. Ahlstrom, T. Lanne, P. Ask, Pulse wave transit time for monitoring respiration rate. Med. Biol. Eng. Comput. 44(6), 471–478 (2006)

    Article  Google Scholar 

  • P.M. Kearney, M. Whelton, K. Reynolds, P. Muntner, P.K. Whelton, J. He, Global burden of hypertension: analysis of worldwide data. Lancet 365(9455), 217–223 (2005)

    Google Scholar 

  • K. Kotani, K. Takamasu, Y. Jimbo, Y. Yamamoto, Postural-induced phase shift of respiratory sinus arrhythmia and blood pressure variations: insight from respiratory-phase domain analysis. Am. J. Physiol. Heart Circ. Physiol. 294(3), H1481–H1489 (2008)

    Article  Google Scholar 

  • W.H. Kullmann, Y. Zhao, T. Bischof, Hemodynamic modeling strategy for non-invasive online monitoring of arterial blood pressure based on pulse transit time detection. Biomed. Tech. 55(1), 1–4 (2010)

    Article  Google Scholar 

  • M. Masè, W. Mattei, R. Cucino, L. Faes, G. Nollo, Feasibility of cuff-free measurement of systolic and diastolic arterial blood pressure. J. Electrocardiol. 44(2), 201–207 (2011)

    Article  Google Scholar 

  • M.G. Mohaupt, J. Schmidli, F.C. Luft, Management of uncontrollable hypertension with a carotid sinus stimulation device. Hypertension 50(5), 825–828 (2007)

    Article  Google Scholar 

  • W.W. Nichols, M.F. O’Rourke, C. Vlachopoulos, McDonald’s Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles, 6th edn. (Hodder Arnold, New York 2011)

    Google Scholar 

  • P.A. Obrist, K.C. Light, J.A. McCubbin, J.S. Hutcheson, J.L. Hoffer, Pulse transit time: relationship to blood pressure and myocardial performance. Psychophysiology 16(3), 292–301 (1979)

    Article  Google Scholar 

  • R. Payne, C. Symeonides, Pulse transit time measured from the ECG: an unreliable marker of beat-to-beat blood pressure. J. Appl. Physiol. 100, 136–141 (2006)

    Article  Google Scholar 

  • J. Peñaz, Photoelectric measurement of blood pressure, volume and flow in the finger. Digest of the 10th International Conference on Medical and Biological Engineering, pp. 162–164. (Dresden 1973)

  • J. Peñaz, A. Voigt, W. Teichmann, Beitrag zur fortlaufenden indirekten Blutdruckmessung. Z. Gesamte. Inn. Med. 31, 1030–1033 (1976)

    Google Scholar 

  • D.J. Pitson, A. Sandell, R. van den Hout, J.R. Stradling, Use of pulse transit time as a measure of inspiratory effort in patients with obstructive sleep apnoea. Eur. Respir. J. 8(10), 1669–1674 (1995)

    Article  Google Scholar 

  • J. Potkay, Long term, implantable blood pressure monitoring systems. Biomedical Microdevices 10(3), 379–392 (2008)

    Article  Google Scholar 

  • A. Reisner, P.A. Shaltis, D.B. McCombie, H. Asada, Utility of the photoplethysmogram in circulatory monitoring. Anesthesiology 108(5), 950–958 (2008)

    Article  Google Scholar 

  • W.A. Riley, R.W. Barnes, G.W. Evans, G.L. Burke, Ultrasonic measurement of the elastic modulus of the common carotid artery. The Atherosclerosis Risk in Communities (ARIC) Study. Stroke 23(7), 952–956 (1992)

    Article  Google Scholar 

  • D. Sommermeyer, M. Schwaibold, B. Schöller, L. Grote, J. Hedner, A. Bolz, Cardiovascular risk: analysis of the photoplethysmographic pulse wave signal. Biomed. Tech. 55(1), 85–88 (2010)

    Google Scholar 

  • A. Steptoe, H. Smulyan, B. Gribbin, Pulse wave velocity and blood pressure change: calibration and applications. Psychophysiology 13(5), 488–493 (1976)

    Article  Google Scholar 

  • J Thomas (1955) A method for continuously indicating blood pressure. J. Physiol. (Lond.) 129(3), 75–76

    Google Scholar 

  • N.C. Tsai, C.Y. Sue, Review of MEMS-based drug delivery and dosing systems. Sensor. Actuat. A-Phys. 134(2), 555–564 (2007)

    Article  Google Scholar 

  • M.Y.M. Wong, C.C.Y. Poon, Y.T. Zhang, An evaluation of the cuffless blood pressure estimation based on pulse transit time technique: a half year study on normotensive subjects. Cardiovasc. Eng. 9(1), 32–38 (2009)

    Article  Google Scholar 

  • Y. Zhao, M. Yamamoto, M. Munakata, M. Nakao, N. Katayama, Investigation of the time delay between variations in heart rate and blood pressure. Med. Biol. Eng. Comput. 37(3), 344–347 (1999)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Peter Liebetraut for his measurements analyzing the material properties of silicones. This work was financially supported by the Baden-Württemberg Stiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Fiala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fiala, J., Bingger, P., Ruh, D. et al. An implantable optical blood pressure sensor based on pulse transit time. Biomed Microdevices 15, 73–81 (2013). https://doi.org/10.1007/s10544-012-9689-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-012-9689-9

Keywords

Navigation