Skip to main content
Log in

Modeling and experiments of magneto-nanosensors for diagnostics of radiation exposure and cancer

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

We present a resistive network model, protein assay data, and outlook of the giant magnetoresistive (GMR) spin-valve magneto-nanosensor platform ideal for multiplexed detection of protein biomarkers in solutions. The magneto-nanosensors are designed to have optimal performance considering several factors such as sensor dimension, shape anisotropy, and magnetic nanoparticle tags. The resistive network model indicates that thinner spin-valve sensors with narrower width lead to higher signals from magnetic nanoparticle tags. Standard curves and real-time measurements showed a sensitivity of ~10 pM for phosphorylated-structural maintenance of chromosome 1 (phosphor-SMC1), ~53 fM for granulocyte colony stimulation factor (GCSF), and ~460 fM for interleukin-6 (IL6), which are among the representative biomarkers for radiation exposure and cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

phosphor-SMC1:

Phosphorylated-structural maintenance of chromosome 1

GCSF:

Granulocyte colony stimulation factor

IL6:

Interleukin-6

GMR:

Giant magnetoresistance

MTJ:

Magnetic tunnel junction

ELISA:

Enzyme-linked immunosorbent assay

References

  • D. Appell, Wired for success. Nature 419, 553–555 (2002)

    Article  Google Scholar 

  • M. Aritomi, N. Kunishima, T. Okamoto, R. Kuroki, Y. Ota, K. Morikawa, Atomic structure of the GCSF-receptor complex showing a new cytokine-receptor recognition scheme. Nature 401, 713–717 (1999)

    Article  Google Scholar 

  • D.R. Baselt, G.U. Lee, M. Natesan, S.W. Metzger, P.E. Sheehan, R.J. Colton, A biosensor based on magnetoresistance technology. Biosens. Bioelectron. 13, 731–739 (1998)

    Article  Google Scholar 

  • F.-Y. Cheng, C.-H. Su, Y.-S. Yang, C.-S. Yeh, C.-Y. Tsai, C.-L. Wu, M.-T. Wu, D.-B. Shieh, Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical applications. Biomaterials 26, 729–738 (2005)

    Article  Google Scholar 

  • J.-W. Choi, K.W. Oh, A. Han, N. Okulan, C.A. Wijayawardhana, C. Lannes, S. Bhansali, K.T. Schlueter, W.R. Heineman, H.B. Halsall, J.H. Nevin, A.J. Helmicki, H.T. Henderson, C.H. Ahn, Development and characterization of microfluidic devices and systems for magnetic bead-based biochemical detection. Biomed. Microdevices 3(3), 191–200 (2001)

    Article  Google Scholar 

  • S.W. Cole, J.M.G. Arevalo, R. Takahashi, E.K. Sloan, S.K. Lutgendorf, A.K. Sood, J.F. Sheridan, T.E. Seeman, Computational identification of gene-social environment interaction at the human IL6 locus. Proc. Natl. Acad. Sci. U.S.A. 107(12), 5681–5686 (2010)

    Article  Google Scholar 

  • J.M. Daughton, GMR applications. J. Magn. Magn. Mater. 192, 334–342 (1999)

    Article  Google Scholar 

  • C.J. De Groot, M.J.A. Van Luyn, W.N.E. Van Dijk-Wolthuis, J.A. Cadée, J.A. Plantinga, W.D. Otter, W.E. Hennink, In vitro biocompatibility of biodegradable dextran-based hydrogels tested with human fibroblasts. Biomaterials 22, 1197–1203 (2001)

    Article  Google Scholar 

  • G.D. Demetri, J.D. Griffin, Granulocyte colony-stimulating factor and its receptor. Blood 78(11), 2791–2808 (1991)

    Google Scholar 

  • T.A. Desai, D.J. Hansford, L. Kulinsky, A.H. Nashat, G. Rasi, J. Tu, Y. Wang, M. Zhang, M. Ferrari, Nanopore technology for biomedical applications. Biomed. Microdevices 2(1), 11–40 (1999)

    Article  Google Scholar 

  • J. Dobson, Magnetic nanoparticles for drug delivery. Drug Develop. Res. 67, 55–60 (2006)

    Article  Google Scholar 

  • R. Fan, O. Vermesh, A. Srivastava, B.K.H. Yen, L. Qin, H. Ahmad, G.A. Kwong, C.-C. Liu, J. Gould, L. Hood, J.R. Heath, Integrated barcode chips for rapid, muplexed, analysis of proteins in microliter quantities of blood. Nat. Biotechnol. 26(12), 1373–1378 (2008)

    Article  Google Scholar 

  • O.C. Farokhzad, R. Langer, Impact of nanotechnology on drug delivery. ACS Nano 3(1), 16–20 (2009)

    Article  Google Scholar 

  • R.S. Gaster, D.A. Hall, C.H. Nielsen, S.J. Osterfeld, H. Yu, K.E. Mach, R.J. Wilson, B. Murmann, J.C. Liao, S.S. Gambhir, S.X. Wang, Matrix-insensitive protein assays push the limits of biosensor in medicine. Nat. Med. 15, 1327–1332 (2009)

    Article  Google Scholar 

  • R.S. Gaster, D.A. Hall, S.X. Wang, Autoassembly protein assays for analyzing antibody cross-reactivity. Nano Lett. 11(7), 2579–2583 (2011a)

    Article  Google Scholar 

  • R.S. Gaster, D.A. Hall, S.X. Wang, nanoLAB: an ultraportable, handheld diagnostic laboratory for global health. Lab Chip 11, 950–956 (2011b)

    Article  Google Scholar 

  • R.S. Gaster, L. Xu, S.-J. Han, R.J. Wilson, D.A. Hall, S.J. Osterfeld, H. Yu, S.X. Wang, Quantification of protein interactions and solution transport using high-density GMR sensor arrays. Nat. Nanotechnol. 6, 314–320 (2011c)

    Article  Google Scholar 

  • A.J. Haes, L. Chang, W.L. Klein, R.P. Van Duyne, Detection of a biomarker for Alzheimer’s disease from synthetic and clinical samples using a nanoscale optical biosensor. J. Am. Chem. Soc. 127, 2264–2271 (2005)

    Article  Google Scholar 

  • D.A. Hall, R.S. Gaster, T. Lin, S.J. Osterfeld, S. Han, B. Murmann, S.X. Wang, GMR biosensor arrays: a system perspective. Biosens. Bioelectron. 25(9), 2051–2057 (2010)

    Article  Google Scholar 

  • L.A. Harris, J.D. Goff, A.Y. Carmichael, J.S. Riffle, J.J. Harburn, T.G. St. Pierre, M. Saunders, Magnetite nanoparticle dispersions stabilized with triblock copolymers. Chem. Mater. 15, 1367–1377 (2003)

    Article  Google Scholar 

  • S. Howorka, Z. Siwy, Nanopore analytics: sensing of single molecules. Chem. Soc. Rev. 38, 2360–2384 (2009)

    Article  Google Scholar 

  • M.-H. Hsu, Y.-C. Su, Iron-oxide embedded solid lipid nanoparticles for magnetically controlled heating and drug delivery. Biomed. Microdevices 10, 785–793 (2008)

    Article  Google Scholar 

  • K.-I. Ishiguro, J. Kim, S. Fujiyama-Nakamura, S. Kato, Y. Watanabe, A new meiosis-specific cohesin complex implicated in the cohesin code for homologous pairing. EMBO Rep. 12(3), 267–275 (2011)

    Article  Google Scholar 

  • R.G. Ivey, H.D. Moore, U.J. Voytovich, C.P. Thienes, T.D. Lorentzen, E.L. Pogosova-Agadjanyan, S. Frayo, V.K. Izaguirre, S.J. Lundberg, L. Hedin, K.R. Badiozamani, A.N. hoofnagle, D.L. Stirewalt, P. Wang, G.E. Georges, A.K. Gopal, A.G. Paulovich, Blood-based detection of radiation exposure in humans based on novel phospho-Smc1 ELISA. Radiat. Res. 175(3), 266–281 (2011)

    Article  Google Scholar 

  • D. Kim, N. Lee, M. Park, B.H. Kim, K. An, T. Hyeon, Synthesis of uniform ferrimagnetic magnetite nanocubes. J. Am. Chem. Soc. 131(2), 454–455 (2009)

    Article  Google Scholar 

  • M. Klokkenburg, C. Vonk, E.M. Claesson, J.D. Meeldijk, B.H. Erné, A.P. Philipse, Direct imaging of zero-field dipolar structures in colloidal dispersions of synthetic magnetite. J. Am. Chem. Soc. 126, 16706–16707 (2004)

    Article  Google Scholar 

  • M.V. Kovalenko, M.I. Bodnarchuk, R.T. Lechner, G. Hesser, F. Schäffler, W. Heiss, Fatty acid salts as stabilizers in size- and shape-controlled nanocrystal synthesis: the case of inverse spinel iron oxide. J. Am. Chem. Soc. 129, 6352–6353 (2007)

    Article  Google Scholar 

  • W.S. Lam, X. Yang, C.A. Makaroff, Characterization of Arabidopsis thaliana SMC1 and SMC3: evidence that AtSMC3 may function beyond chromosome cohesion. J. Cell Sci. 118(14), 3037–3048 (2005)

    Article  Google Scholar 

  • M.E. Mackay, A. Tuteja, P.M. Duxbury, C.J. Hawker, B. Van Horn, Z. Guan, G. Chen, R.S. Krishnan, General strategies for nanoparticle dispersion. Science 311, 1740–1743 (2006)

    Article  Google Scholar 

  • R.S. Molday, S.P.S. Yen, A. Rembaum, Applications of magnetic nanospheres in labelling and separation of cells. Nature 268(4), 437–438 (1977)

    Article  Google Scholar 

  • N. Nitin, L.E.W. LaConte, O. Zurkiya, X. Hu, G. Bao, Functionalization and peptide-based delivery of magnetic nanoparticles as an intracellular MRI contrast agent. J. Biol. Inorg. Chem. 9, 706–712 (2004)

    Article  Google Scholar 

  • S.J. Osterfeld, H. Yu, R.S. Gaster, S. Caramuta, L. Xu, S.-J. Han, D.A. Hall, R.J. Wilson, S. Sun, R.L. White, R.W. Davis, N. Pourmand, S.X. Wang, Multiplex protein assays based on real-time magnetic nanotag sensing. Proc. Natl. Acad. Sci. U.S.A. 105(52), 20637–20640 (2008)

    Article  Google Scholar 

  • V.P. Pattani, C. Li, T.A. Desai, T.Q. Vu, Microcontact printing of quantum dot bioconjugate arrays for localized capture and detection of biomolecules. Biomed. Microdevices 10, 367–374 (2008)

    Article  Google Scholar 

  • M.S. Pepe, R. Etzioni, Z. Feng, J.D. Potter, M.L. Thompson, M. Thornquist, M. Winget, Y. Yasui, Phases of biomarker development for early detection of cancer. J. Natl. Cancer I. 93(14), 1054–1061 (2001)

    Article  Google Scholar 

  • M. Sadagurski, L. Norquay, J. Farhang, K. D’Aquino, K. Copps, M.F. White, Human IL6 enhances leptin action in mice. Diabetologia 53, 525–535 (2010)

    Article  Google Scholar 

  • B.R. Smith, J. Heverhagen, M. Knopp, P. Schmalbrock, J. Shapiro, M. Shiomi, N.I. Moldovan, M. Ferrari, S.C. Lee, Localization to atherosclerotic plaque and biodistribution of biochemically derivatized superparamagnetic iron oxide nanoparticles (SPIONs) contrast particles for magnetic resonance imaging (MRI). Biomed. Microdevices 9, 719–727 (2007)

    Article  Google Scholar 

  • C. Sun, J.S.H. Lee, M. Zhang, Magnetic nanoparticles in MR imaging and drug delivery. Adv. Drug Deliver. Rev. 60, 1252–1265 (2008)

    Article  Google Scholar 

  • B. Thiesen, A. Jordan, Clinical applications of magnetic nanoparticles for hyperthermia. Int. J. Hyperthermia 24(6), 467–474 (2008)

    Article  Google Scholar 

  • C.H.A. van de Lest, E.M.M. Versteeg, J.H. Veerkamp, T.H. van Kuppevelt, Elimination of autofluorescence in immunofluorescence microscopy with digital image processing. J. Histochem. Cytochem. 43(7), 727–730 (1995)

    Article  Google Scholar 

  • H.C.T. van Zaanen, R.P. Koopmans, L.A. Aarden, H.J.A.M. Rensink, J.M.L. Stouthard, S.O. Warnaar, H.M. Lokhorst, M.H.J. van Oers, Endogenous interleukin 6 production in multiple myeloma patients treated with chimeric monoclonal anti-IL6 antibodies indicates the existence of a positive feed-back loop. J. Clin. Invest. 98(6), 1441–1448 (1996)

    Article  Google Scholar 

  • S.X. Wang, G. Li, Advances in giant magnetoresistance biosensors with magnetic nanoparticle tags: review and outlook. IEEE Trans. Magn. 44(7), 1687–1702 (2008)

    Article  Google Scholar 

  • G.M. Whitesides, Nanoscience, nanotechnology, and chemistry. Small 1(2), 172–179 (2005)

    Article  Google Scholar 

  • J.D. Wulfkuhle, L.A. Liotta, E.F. Petricoin, Proteomic applications for the early detection of cancer. Nat. Rev. Cancer 3, 267–275 (2003)

    Article  Google Scholar 

  • L. Xu, H. Yu, M.S. Akhras, S.-J. Han, S. Osterfeld, R.L. White, N. Pourmand, S.X. Wang, Giant magnetoresistive biochip for DNA detection and HPV genotyping. Biosens. Bioelectron. 24, 99–103 (2008)

    Article  Google Scholar 

  • G. Zheng, F. Patolsky, Y. Cui, W.U. Wang, C.M. Lieber, Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 23(10), 1294–1301 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Richard G. Ivey at Fred Hutchinson Cancer Research Center in Seattle for his generous support of phosphor-SMC1 antibodies and standard. This work was supported, in part, by the United States National Institute of Health (grants U54CA143907, U54CA151459, R21AI085566, and R33CA138330), the United States National Science Foundation (grant ECCS-0801385-000), a Gates Foundation Grand Challenge Exploration Award, and Stanford Bio-X Program. Correspondence and requests for materials should be addressed to S.X.W.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shan X. Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, D., Lee, JR., Shen, E. et al. Modeling and experiments of magneto-nanosensors for diagnostics of radiation exposure and cancer. Biomed Microdevices 15, 665–671 (2013). https://doi.org/10.1007/s10544-012-9678-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-012-9678-z

Keywords

Navigation