Skip to main content
Log in

Additive manufacturing of wet-spun polymeric scaffolds for bone tissue engineering

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

An Additive Manufacturing technique for the fabrication of three-dimensional polymeric scaffolds, based on wet-spinning of poly(ε-caprolactone) (PCL) or PCL/hydroxyapatite (HA) solutions, was developed. The processing conditions to fabricate scaffolds with a layer-by-layer approach were optimized by studying their influence on fibres morphology and alignment. Two different scaffold architectures were designed and fabricated by tuning inter-fibre distance and fibres staggering. The developed scaffolds showed good reproducibility of the internal architecture characterized by highly porous, aligned fibres with an average diameter in the range 200–250 μm. Mechanical characterization showed that the architecture and HA loading influenced the scaffold compressive modulus and strength. Cell culture experiments employing MC3T3-E1 preosteoblast cell line showed good cell adhesion, proliferation, alkaline phosphatase activity and bone mineralization on the developed scaffolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • F.J. Alcaín, M.I. Burón, J. Bioenerg. Biomembr. 26, 393–398 (1994)

    Article  Google Scholar 

  • ASTM International F2792 - 10e1 “Standard Terminology for Additive Manufacturing Technologies”, 2010.

  • P. Bartolo, M. Domingos, A. Gloria, J. Ciurana, CIRP Ann. Manuf. Technol. 60, 271–274 (2011)

    Article  Google Scholar 

  • B.F. Barton, J.L. Reeve, A.J. McHugh, J Polym Sci Pol Phys 35, 569–585 (1997)

    Article  Google Scholar 

  • G.R. Beck, E.C. Sullivan, E. Moran, B. Zerler, J. Cell. Biochem. 68, 269–280 (1998)

    Article  Google Scholar 

  • J.W. Calvert, W.C. Chua, N.A. Gharibjanian, S. Dhar, G.R.D. Evans, Plast. Reconstr. Surg. 116, 567–576 (2005)

    Article  Google Scholar 

  • H. Gao, Y. Gu, Q. Ping, J Control Release 118, 325–332 (2007)

    Article  Google Scholar 

  • A. Gloria, T. Russo, R. De Santis, L. Ambrosio, J App Biomat Biomech 7, 141–152 (2009)

    Google Scholar 

  • C.D. Hoemann, H. El-Gabalawy, M.D. McKee, Pathol. Biol. 57, 318–323 (2009)

    Article  Google Scholar 

  • D.W. Hutmacher, Biomaterials 21, 2529–2543 (2000)

    Article  Google Scholar 

  • D.W. Hutmacher, T. Schantz, I. Zein, K.W. Ng, S.H. Teoh, K.C. Tan, J. Biomed. Mater. Res. 55, 203–216 (2001)

    Article  Google Scholar 

  • V. Karageorgiou, D. Kaplan, Biomaterials 26, 5474–5491 (2005)

    Article  Google Scholar 

  • M. Kikuchi, Y. Koyama, T. Yamada, Y. Imamura, T. Okada, N. Shirahama, K. Akita, K. Takakuda, J. Tanaka, Biomaterials 25, 5979–5986 (2004)

    Article  Google Scholar 

  • H.-W. Kim, J.C. Knowles, H.-E. Kim, J Biomed Mater Res A 70A, 467–479 (2004)

    Article  Google Scholar 

  • Y-H Koh, C-J Bae , J-J Sun , I-K Jun , H-E Kim, J Mater Sci Mater M 17, 773-778-778 (2006)

    Google Scholar 

  • T. Kokubo, H.M. Kim, M. Kawashita, Biomaterials 24, 2161–2175 (2003)

    Article  Google Scholar 

  • K.P. Kommareddy, C. Lange, M. Rumpler, J.W. Dunlop, I. Manjubala, J. Cui, K. Kratz, A. Lendlein, P. Fratzl, Biointerphases 5, 45 (2010)

    Article  Google Scholar 

  • K. Kyriakidou, G. Lucarini, A. Zizzi, E. Salvolini, M. Mattioli Belmonte, F. Mollica, A. Gloria, L. Ambrosio, J Bioact Compat Pol 23, 227–243 (2008)

    Article  Google Scholar 

  • R. Langer, J.P. Vacanti, Science 260, 920–926 (1993)

    Article  Google Scholar 

  • K.F. Leong, C.M. Cheah, C.K. Chua, Biomaterials 24, 2363–2378 (2003)

    Article  Google Scholar 

  • I.B. Leonor, M.T. Rodrigues, M.E. Gomes, R.L. Reis, J Tissue Eng Regen Med 5, 104–111 (2011)

    Article  Google Scholar 

  • M. Domingos, F. Chiellini, A. Gloria, L. Ambrosio, P. J. Bartolo, Chiellini E, in BioExtruder: Study of the influence of process parameters on PCL scaffolds properties, ed. By Bartolo PJ (CRC Press Taylor & Francis; 2009), p 67 - 73

  • B.C. Mack, K.W. Wright, M.E. Davis, J Control Release 139, 205–211 (2009)

    Article  Google Scholar 

  • D. Marolt, M. Knezevic, G. Vunjak-Novakovic, Stem Cell Research & Therapy 1, 1–10 (2010)

    Article  Google Scholar 

  • C. Mota, D. Puppi, D. Dinucci, C. Errico, P. Bártolo, F. Chiellini, Materials 4, 527–542 (2011)

    Article  Google Scholar 

  • S. Ozkan, D.M. Kalyon, X. Yu, C.A. McKelvey, M. Lowinger, Biomaterials 30, 4336–4347 (2009)

    Article  Google Scholar 

  • J.-B. Park, J. Surg. Res. 6, 1–6 (2010)

    Google Scholar 

  • I. Pashkuleva, P.M. López-Pérez, H.S. Azevedo, R.L. Reis, Mat Sci Eng C 30, 981–989 (2010)

    Article  Google Scholar 

  • D. Puppi, F. Chiellini, A.M. Piras, E. Chiellini, Prog. Polym. Sci. 35, 403–440 (2010)

    Article  Google Scholar 

  • D. Puppi, D. Dinucci, C. Bartoli, C. Mota, C. Migone, F. Dini, G. Barsotti, F. Carlucci, F. Chiellini, J Bioact Compat Pol 26, 478–492 (2011a)

    Article  Google Scholar 

  • D. Puppi, A.M. Piras, F. Chiellini, E. Chiellini, A. Martins, I.B. Leonor, N. Neves, R. Reis, J Tissue Eng Regen Med 5, 253–263 (2011b)

    Article  Google Scholar 

  • L.D. Quarles, D.A. Yohay, L.W. Lever, R. Caton, R.J. Wenstrup, J. Bone Miner. Res. 7, 683–692 (1992)

    Article  Google Scholar 

  • B. Rai, M.E. Oest, K.M. Dupont, K.H. Ho, S.H. Teoh, R.E. Guldberg, J Biomed Mater Res A 81A, 888–899 (2007)

    Article  Google Scholar 

  • K. Rezwan, Q.Z. Chen, J.J. Blaker, A.R. Boccaccini, Biomaterials 27, 3413–3431 (2006)

    Article  Google Scholar 

  • C. Schiller, M. Epple, Biomaterials 24, 2037–2043 (2003)

    Article  Google Scholar 

  • C.M. Stanford, P.A. Jacobson, E.D. Eanes, L.A. Lembke, R.J. Midura, J. Biol. Chem. 270, 9420–9428 (1995)

    Article  Google Scholar 

  • M.S. Taylor, A.U. Daniels, K.P. Andriano, J. Heller, J. Appl. Biomater. 5, 151–157 (1994)

    Article  Google Scholar 

  • C.S. Tsay, A.J. McHugh, J Polym Sci Pol Phys 30, 309–313 (1992)

    Article  Google Scholar 

  • K. Tuzlakoglu, C.M. Alves, J.F. Mano, R.L. Reis, Macromol. Biosci. 4, 811–819 (2004)

    Article  Google Scholar 

  • Tuzlakoglu K, Reis RL, in Chitosan-based scaffolds in orthopaedic applications, ed. By Reis RL (Woodhead; Cambridge, 2008), p 357–373

  • K. Tuzlakoglu, I. Pashkuleva, M.T. Rodrigues, M.E. Gomes, G.Hv. Lenthe, R. Müller, R.L. Reis, J Biomed Mater Res A 92A, 369–377 (2010)

    Article  Google Scholar 

  • E. Ural, K. Kesenci, L. Fambri, C. Migliaresi, E. Piskin, Biomaterials 21, 2147–2154 (2000)

    Article  Google Scholar 

  • J.P. Vacanti, M.A. Morse, W.M. Saltzman, A.J. Domb, A. Perez-Atayde, R. Langer, J. Pediatr. Surg. 23, 3–9 (1988)

    Article  Google Scholar 

  • F. Wang, L. Shor, A. Darling, S. Khalil, W. Sun, S. Güçeri, A. Lau, Rapid Prototyping J 10, 42–49 (2004)

    Article  Google Scholar 

  • J. Wang, X. Yu, Acta Biomater 6, 3004–3012 (2010)

    Article  Google Scholar 

  • B.M. Whited, J.R. Whitney, M.C. Hofmann, Y. Xu, M.N. Rylander, Biomaterials 32, 2294–2304 (2011)

    Article  Google Scholar 

  • I.M. Wienk, R.M. Boom, M.A.M. Beerlage, A.M.W. Bulte, C.A. Smolders, H. Strathmann, J Membrane Sci 113, 361–371 (1996)

    Article  Google Scholar 

  • J.M. Williams, A. Adewunmi, R.M. Schek, C.L. Flanagan, P.H. Krebsbach, S.E. Feinberg, S.J. Hollister, S. Das, Biomaterials 26, 4817–4827 (2005)

    Article  Google Scholar 

  • M.R. Williamson, A.G.A. Coombes, Biomaterials 25, 459–465 (2004)

    Article  Google Scholar 

  • T.B.F. Woodfield, J. Malda, J. de Wijn, F. Péters, J. Riesle, C.A. van Blitterswijk, Biomaterials 25, 4149–4161 (2004)

    Article  Google Scholar 

  • M.A. Woodruff, D.W. Hutmacher, Prog. Polym. Sci. 35, 1217–1256 (2010)

    Article  Google Scholar 

  • P. Wutticharoenmongkol, P. Pavasant, P. Supaphol, Biomacromolecules 8, 2602–2610 (2007)

    Article  Google Scholar 

  • X. Zhang, H. Hua, X. Shen, Q. Yang, Polymer 48, 1005–1011 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

This work was done within the framework of the European Network of Excellence “EXPERTISSUES” (Project NMP3-CT-2004-500283). Mr. Piero Narducci of University of Pisa, Italy, is acknowledged for recording SEM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federica Chiellini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puppi, D., Mota, C., Gazzarri, M. et al. Additive manufacturing of wet-spun polymeric scaffolds for bone tissue engineering. Biomed Microdevices 14, 1115–1127 (2012). https://doi.org/10.1007/s10544-012-9677-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-012-9677-0

Keywords

Navigation