Skip to main content
Log in

Lipid bilayer coated Al2O3 nanopore sensors: towards a hybrid biological solid-state nanopore

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Solid-state nanopore sensors are highly versatile platforms for the rapid, label-free electrical detection and analysis of single molecules, applicable to next generation DNA sequencing. The versatility of this technology allows for both large scale device integration and interfacing with biological systems. Here we report on the development of a hybrid biological solid-state nanopore platform that incorporates a highly mobile lipid bilayer on a single solid-state Al2O3 nanopore sensor, for the potential reconstitution of ion channels and biological nanopores. Such a system seeks to combine the superior electrical, thermal, and mechanical stability of Al2O3 solid-state nanopores with the chemical specificity of biological nanopores. Bilayers on Al2O3 exhibit higher diffusivity than those formed on TiO2 and SiO2 substrates, attributed to the presence of a thick hydration layer on Al2O3, a key requirement to preserving the biological functionality of reconstituted membrane proteins. Molecular dynamics simulations demonstrate that the electrostatic repulsion between the dipole of the DOPC headgroup and the positively charged Al2O3 surface may be responsible for the enhanced thickness of this hydration layer. Lipid bilayer coated Al2O3 nanopore sensors exhibit excellent electrical properties and enhanced mechanical stability (GΩ seals for over 50 h), making this technology ideal for use in ion channel electrophysiology, the screening of ion channel active drugs and future integration with biological nanopores such as α-hemolysin and MspA for rapid single molecule DNA sequencing. This technology can find broad application in bio-nanotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • S.P. Adiga, P. Zapol, L.A. Curtiss, J. Phys. Chem. C 111(20), 7422–7429 (2007)

    Article  Google Scholar 

  • A. Aksimentiev, Nanoscale 2(4), 468–483 (2010)

    Article  Google Scholar 

  • H.C. Andersen, J. Comput. Phys. 52(1), 24–34 (1983)

    Article  MATH  Google Scholar 

  • D. Axelrod, D.E. Koppel, J. Schlessinger, E. Elson, W.W. Webb, Biophys. J. 16(9), 1055–1069 (1976)

    Article  Google Scholar 

  • P.F. Batcho, D.A. Case, T. Schlick, J. Chem. Phys. 115(9), 4003–4018 (2001)

    Article  Google Scholar 

  • A. Berquand, P.E. Mazeran, J. Pantigny, V. Proux-Delrouyre, J.M. Laval, C. Bourdillon, Langmuir 19(5), 1700–1707 (2003)

    Article  Google Scholar 

  • T. Cassier, A. Sinner, A. Offenhauser, H. Mohwald, Colloids Surf. B 15(3–4), 215–225 (1999)

    Article  Google Scholar 

  • E. Castellana, P. Cremer, Surf. Sci. Rep. 61(10), 429–444 (2006)

    Article  Google Scholar 

  • T. Cha, A. Guo, X.Y. Zhu, Biophys. J. 90(4), 1270–1274 (2006)

    Article  Google Scholar 

  • H. Chang, B. Venkatesan, S. Iqbal, G. Andreadakis, F. Kosari, G. Vasmatzis, D. Peroulis, R. Bashir, Biomed. Microdevices 8(3), 263–269 (2006)

    Article  Google Scholar 

  • J. Clarke, H.C. Wu, L. Jayasinghe, A. Patel, S. Reid, H. Bayley, Nat. Nanotechnol. 4(4), 265–270 (2009)

    Article  Google Scholar 

  • P.S. Cremer, S.G. Boxer, J. Phys. Chem. B 103(13), 2554–2559 (1999)

    Article  Google Scholar 

  • E.R. Cruz-Chu, A. Aksimentiev, K. Schulten, J. Phys. Chem. B 110(43), 21497–21508 (2006)

    Article  Google Scholar 

  • G. Csucs, J.J. Ramsden, Biochim. Et Biophys. Acta Biomembr. 1369(1), 61–70 (1998)

    Article  Google Scholar 

  • I.M. Derrington, T.Z. Butler, M.D. Collins, E. Manrao, M. Pavlenok, M. Niederweis, J.H. Gundlach, Proc. Natl Acad. Sci. 107(37), 16060–16065 (2010)

    Article  Google Scholar 

  • J. Drews, Science 287(5460), 1960–1964 (2000)

    Article  Google Scholar 

  • J. Drexler, C. Steinem, J. Phys. Chem. B 107(40), 11245–11254 (2003)

    Article  Google Scholar 

  • H.C. Gaede, K.M. Luckett, I.V. Polozov, K. Gawrisch, Langmuir 20(18), 7711–7719 (2004)

    Article  Google Scholar 

  • A. Grakoui, S.K. Bromley, C. Sumen, M.M. Davis, A.S. Shaw, P.M. Allen, M.L. Dustin, Science 285(5425), 221–227 (1999)

    Article  Google Scholar 

  • J.T. Groves, L.K. Mahal, C.R. Bertozzi, Langmuir 17(17), 5129–5133 (2001)

    Article  Google Scholar 

  • J.T. Groves, N. Ulman, S.G. Boxer, Science 275(5300), 651–653 (1997)

    Article  Google Scholar 

  • J.T. Groves, N. Ulman, P.S. Cremer, S.G. Boxer, Langmuir 14(12), 3347–3350 (1998)

    Article  Google Scholar 

  • X.J. Han, A. Studer, H. Sehr, I. Geissbuhler, M. Di Berardino, F.K. Winkler, L.X. Tiefenauer, Adv. Mater. 19(24), 4466 (2007)

    Article  Google Scholar 

  • J.B. Heng, A. Aksimentiev, C. Ho, P. Marks, Y.V. Grinkova, S. Sligar, K. Schulten, G. Timp, Nano Lett. 5(10), 1883–1888 (2005)

    Article  Google Scholar 

  • D.P. Hoogerheide, S. Garaj, J.A. Golovchenko, Phys. Rev. Lett. 102(25), 256804 (2009)

    Article  Google Scholar 

  • S.J. Johnson, T.M. Bayerl, D.C. McDermott, G.W. Adam, A.R. Rennie, R.K. Thomas, E. Sackmann, Biophys. J. 59(2), 289–294 (1991)

    Article  Google Scholar 

  • H.G. Kapitza, G. Mcgregor, K.A. Jacobson, Proc. Natl Acad. Sci. U.S.A. 82(12), 4122–4126 (1985)

    Article  Google Scholar 

  • C. Kataoka-Hamai, H. Inoue, Y. Miyahara, Langmuir 24(17), 9916–9920 (2008)

    Article  Google Scholar 

  • B.W. Koenig, S. Krueger, W.J. Orts, C.F. Majkrzak, N.F. Berk, J.V. Silverton, K. Gawrisch, Langmuir 12(5), 1343–1350 (1996)

    Article  Google Scholar 

  • S. Kumar, J.H. Hoh, Langmuir 16(25), 9936–9940 (2000)

    Article  Google Scholar 

  • Z.V. Leonenko, D. Merkle, S.P. Lees-Miller, D.T. Cramb, Langmuir 18(12), 4873–4884 (2002)

    Article  Google Scholar 

  • J. Li, M. Gershow, D. Stein, E. Brandin, J.A. Golovchenko, Nat. Mater. 2(9), 611–615 (2003)

    Article  Google Scholar 

  • A.D. MacKerell, A.D. MacKerell, D. Bashford, M. Bellott, R.L. Dunbrack, J.D. Evanseck, M.J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F.T.K. Lau, C. Mattos, S. Michnick, T. Ngo, D.T. Nguyen, B. Prodhom, W.E. Reiher, B. Roux, M. Schlenkrich, J.C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiorkiewicz-Kuczera, D. Yin, M. Karplus, J. Phys. Chem. B 102(18), 3586–3616 (1998)

    Article  Google Scholar 

  • M.D. Mager, B. Almquist, N.A. Melosh, Langmuir 24(22), 12734–12737 (2008)

    Article  Google Scholar 

  • M.D. Mager, N.A. Melosh, Adv. Mater. 20(23), 4423–4427 (2008)

    Article  Google Scholar 

  • G.J. Martyna, D.J. Tobias, M.L. Klein, J. Chem. Phys. 101(5), 4177–4189 (1994)

    Article  Google Scholar 

  • B. McNally, M. Wanunu and A. Meller, Nano Lett. (2008)

  • S. Miyamoto, P.A. Kollman, J. Comput. Chem. 13(8), 952–962 (1992)

    Article  Google Scholar 

  • P. Nollert, H. Kiefer, F. Jahnig, Biophys. J. 69(4), 1447–1455 (1995)

    Article  Google Scholar 

  • J.C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R.D. Skeel, L. Kalé, K. Schulten, J. Comput. Chem. 26(16), 1781–1802 (2005)

    Article  Google Scholar 

  • J. Raedler, H. Strey, E. Sackmann, Langmuir 11(11), 4539–4548 (1995)

    Article  Google Scholar 

  • E. Reimhult, F. Hook, B. Kasemo, J. Chem. Phys. 117(16), 7401–7404 (2002)

    Article  Google Scholar 

  • E. Reimhult, F. Hook, B. Kasemo, Langmuir 19(5), 1681–1691 (2003)

    Article  Google Scholar 

  • R. Richter, A. Mukhopadhyay, A. Brisson, Biophys. J. 85(5), 3035–3047 (2003)

    Article  Google Scholar 

  • W. Romer, C. Steinem, Biophys. J. 86(2), 955–965 (2004)

    Article  Google Scholar 

  • R.F. Roskamp, I.K. Vockenroth, N. Eisenmenger, J. Braunagel, I. Koper, Chemphyschem 9(13), 1920–1924 (2008)

    Article  Google Scholar 

  • E. Sackmann, Science 271(5245), 43–48 (1996)

    Article  Google Scholar 

  • J. Shi, T. Yang, S. Kataoka, Y. Zhang, A.J. Diaz, P.S. Cremer, J. Am. Chem. Soc. 129(18), 5954–5961 (2007)

    Article  Google Scholar 

  • S.W.I. Siu, R. Vacha, P. Jungwirth, R.A. Bockmann, J. Chem. Phys. 128(12), 125103–12 (2008)

    Article  Google Scholar 

  • R.M.M. Smeets, N.H. Dekker, C. Dekker, Nanotechnology 20(9), 095501 (2009)

    Article  Google Scholar 

  • R.M.M. Smeets, S.W. Kowalczyk, A.R. Hall, N.H. Dekker and C. Dekker, Nano Lett. (2008)

  • J.M. Solletti, M. Botreau, F. Sommer, W.L. Brunat, S. Kasas, T.M. Duc, M.R. Celio, Langmuir 12(22), 5379–5386 (1996)

    Article  Google Scholar 

  • T.E. Starr, N.L. Thompson, Langmuir 16(26), 10301–10308 (2000)

    Article  Google Scholar 

  • M. Stelzle, G. Weissmuller, E. Sackmann, J. Phys. Chem. 97(12), 2974–2981 (1993)

    Article  Google Scholar 

  • A.J. Storm, C. Storm, J. Chen, H. Zandbergen, J.-F. Joanny, C. Dekker, Nano Lett. 5(7), 1193–1197 (2005)

    Article  Google Scholar 

  • B.M. Venkatesan, B. Dorvel, S. Yemenicioglu, N. Watkins, I. Petrov, R. Bashir, Adv. Mater. 21(27), 2771–2776 (2009)

    Article  Google Scholar 

  • B.M. Venkatesan, A.B. Shah, J.M. Zuo, R. Bashir, Adv. Funct. Mater. 20(8), 1266–1275 (2010)

    Article  Google Scholar 

  • R.J. White, B. Zhang, S. Daniel, J.M. Tang, E.N. Ervin, P.S. Cremer, H.S. White, Langmuir 22(25), 10777–10783 (2006)

    Article  Google Scholar 

  • Q. Zhao, J. Comer, V. Dimitrov, S. Yemenicioglu, A. Aksimentiev, G. Timp, Nucleic Acids Res. 36(5), 1532–1541 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Scott MacLaren for AFM assistance and Dr. Rick Haasch for assistance with XPS at the Frederick Seitz Materials Research Laboratory Central Facilities, University of Illinois. We also thank the staff at Micro and Nanotechnology Lab, University of Illinois for assistance in device fabrication. We acknowledge the funding from the National Institutes of Health through the NIH Roadmap for Medical Research Nanomedicine Development Center (PN2 EY 018230) and NIH R21 EB007472. A.A. and J.C. acknowledge support from the National Institutes of Health (R01-HG005115 and P41-RR05969), the National Science Foundation (PHY-0822613 and DMR-0955959), and the Petroleum Research Fund (48352-G6). The supercomputer time was provided via TRAC grant MCA05S028.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rashid Bashir.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 673 kb)

ESM 2

(MPG 6483 kb)

ESM 3

(MPG 9695 kb)

ESM 4

(MPG 10711 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venkatesan, B.M., Polans, J., Comer, J. et al. Lipid bilayer coated Al2O3 nanopore sensors: towards a hybrid biological solid-state nanopore. Biomed Microdevices 13, 671–682 (2011). https://doi.org/10.1007/s10544-011-9537-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-011-9537-3

Keywords

Navigation