Article

Biomedical Microdevices

, Volume 13, Issue 3, pp 493-501

“Artificial micro organs”—a microfluidic device for dielectrophoretic assembly of liver sinusoids

  • Julia SchütteAffiliated withNMI Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen
  • , Britta HagmeyerAffiliated withNMI Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen
  • , Felix HolznerAffiliated withNMI Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen
  • , Massimo KubonAffiliated withNMI Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen
  • , Simon WernerAffiliated withNMI Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen
  • , Christian FreudigmannAffiliated withNMI Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen
  • , Karin BenzAffiliated withNMI Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen
  • , Jan BöttgerAffiliated withInstitut für Biochemie, Medizinische Fakultät Universität Leipzig
  • , Rolf GebhardtAffiliated withInstitut für Biochemie, Medizinische Fakultät Universität Leipzig
    • , Holger BeckerAffiliated withMicrofluidic ChipShop GmbH
    • , Martin StelzleAffiliated withNMI Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen Email author 

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

In order to study possible toxic side effects of potential drug compounds in vitro a reliable test system is needed. Predicting liver toxicity presents a major challenge of particular importance as liver cells grown in a cell culture suffer from a rapid loss of their liver specific functions. Therefore we are developing a new microfluidic test system for liver toxicity. This test system is based on an organ-like liver 3D co-culture of hepatocytes and endothelial cells. We devised a microfluidic chip featuring cell culture chambers with integrated electrodes for the assembly of liver sinusoids by dielectrophoresis. Fluid channels enable an organ-like perfusion with culture media and test compounds. Different chamber designs were studied and optimized with regard to dielectrophoretic force distribution, hydrodynamic flow profile, and cell trapping rate using numeric simulations. Based on simulation results a microchip was injection-moulded from COP. This chip allowed the assembly of viable hepatocytes and endothelial cells in a sinusoid-like fashion.

Keywords

Dielectrophoresis Multiphysics simulations Liver sinusoid 3D co-culture Micro-fluidics