Skip to main content
Log in

A multilevel Lab on chip platform for DNA analysis

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Lab-on-chips (LOCs) are critical systems that have been introduced to speed up and reduce the cost of traditional, laborious and extensive analyses in biological and biomedical fields. These ambitious and challenging issues ask for multi-disciplinary competences that range from engineering to biology. Starting from the aim to integrate microarray technology and microfluidic devices, a complex multilevel analysis platform has been designed, fabricated and tested (All rights reserved—IT Patent number TO2009A000915). This LOC successfully manages to interface microfluidic channels with standard DNA microarray glass slides, in order to implement a complete biological protocol. Typical Micro Electro Mechanical Systems (MEMS) materials and process technologies were employed. A silicon/glass microfluidic chip and a Polydimethylsiloxane (PDMS) reaction chamber were fabricated and interfaced with a standard microarray glass slide. In order to have a high disposable system all micro-elements were passive and an external apparatus provided fluidic driving and thermal control. The major microfluidic and handling problems were investigated and innovative solutions were found. Finally, an entirely automated DNA hybridization protocol was successfully tested with a significant reduction in analysis time and reagent consumption with respect to a conventional protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • R. Bashir, Adv. Drug. Deliv. Rev. 56, 1565 (2004)

    Article  Google Scholar 

  • C.-H. Cho, W. Cho, Y. Ahn, S.-Y. Hwang, J. Micromech. Microeng. 17, 1810 (2007)

    Article  Google Scholar 

  • G. Csako, Clin. Chim. Acta 363, 6 (2006)

    Article  Google Scholar 

  • I. Erill, S. Campoy, N. Erill, J. Barbé, J. Aguilò, Sens. Actuators B 96, 685 (2003)

    Article  Google Scholar 

  • V. Hessel, H. Lowe, F. Schinfeld, Chem. Eng. Sci. 60, 2479 (2005)

    Google Scholar 

  • J. Khandurina, A. Guttman, J. Chromatogr. A 943, 159 (2002)

    Article  Google Scholar 

  • J. Kian-Kok Ng, W.-T. Liu, Anal. Bioanal. Chem. 386, 427 (2006)

    Article  Google Scholar 

  • H.-B. Liu, H.-Q. Gong, N. Ramalingam, Y. Jiang, C.-C. Dai, K.M. Hui, J. Micromech. Microeng. 17, 2055 (2007)

    Article  Google Scholar 

  • T. Lund-Olesen, M. Dufva, J.A. Dahl, P. Collas, M.F. Hansen, Biomed. Microdevices 10, 769 (2008)

    Article  Google Scholar 

  • A. Manz, N. Graber, H.M. Widmer, Sens. Actuators B 1, 244 (1990)

    Article  Google Scholar 

  • S.L. Marasso, G. Canavese, M. Cocuzza, A. Ferrarini, E. Giuri, S. Lobartolo, G. Mantero, D. Perrone, M. Quaglio, I. Vallini, Microelectron. Eng. 85, 1326 (2008)

    Article  Google Scholar 

  • R. Möller, R.D. Powell, J.F. Hainfeld, W. Fritzsche, Nano Lett. 5, 1475 (2005)

    Article  Google Scholar 

  • M. Podder, J. Ruan, B.W. Tripp, Z.E. Chu, S.J. Tebbutt, BMC Med. Genomics 1, 5 (2008)

    Article  Google Scholar 

  • J. Pullat, W. Kusnezow, K. Jaakson, M. Beier, J. Hoheisel, A. Metspalu, N. Biotechnol. 25, 133 (2008)

    Article  Google Scholar 

  • M. Quaglio, G. Canavese, E. Giuri, S.L. Marasso, D. Perrone, M. Cocuzza, C.F. Pirri, J. Micromech. Microeng. 18, 055012 (2008)

    Article  Google Scholar 

  • M. Schena, D. Shalon, R.W. Davis, P.O. Brown, Science 270, 467 (1995)

    Article  Google Scholar 

  • P.R. Selvaganapathy, E.T. Carlen, C.H. Mastrangelo, Proc. IEEE 91, 954 (2003)

    Article  Google Scholar 

  • Y.S. Shin, K. Cho, S.H. Lim, S. Chung, S.-J. Park, C. Chung, D.-C. Han, J.K. Chang, J. Micromech. Microeng. 13, 768 (2003)

    Article  Google Scholar 

  • Y. Sun, Y.C. Kwok, Anal. Chim. Acta 556, 80 (2006)

    Article  Google Scholar 

  • S.O. Sundberg, C.T. Wittwer, J. Greer, R.J. Pryor, O. Elenitoba-Johnson, B.K. Gale, Biomed Microdevices 9, 159 (2007)

    Article  Google Scholar 

  • F. Vinet, P. Chaton, Y. Fouillet, Microelectron. Eng. 61, 41 (2002)

    Article  Google Scholar 

  • E.J. Walsh, C. King, R. Grimes, A. Gonzalez, Biomed. Microdevices 8, 59 (2005)

    Article  Google Scholar 

  • H.M. Xia, C. Shu, S.Y.M. Wan, Y.T. Chew, J. Micromech. Microeng. 16, 53 (2006)

    Article  Google Scholar 

Download references

Acknowledgement

This work was accomplished in the framework of LATEMAR (www.latemar.polito.it), Centre of Excellence funded by MIUR (Italian Ministry for Education, University and Research) grants- FIRB 2003–2004 for public/private structures involved in research fields characterized by strategic value.

We would like to thank Dr Kalliopi Rantsioi of Di.Va.P.R.A. department (Faculty of Agricolture, University of Turin), for SilverQuant hardware and software analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Luigi Marasso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marasso, S.L., Giuri, E., Canavese, G. et al. A multilevel Lab on chip platform for DNA analysis. Biomed Microdevices 13, 19–27 (2011). https://doi.org/10.1007/s10544-010-9467-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-010-9467-5

Keywords

Navigation