Skip to main content
Log in

An all-in-one microfluidic device for parallel DNA extraction and gene analysis

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

An Erratum to this article was published on 15 September 2012

Abstract

We have developed a microfluidic device capable of fully integrated sample preparation and gene analysis from crude biosamples such as whole blood. Our platform takes the advantage of the silica superparamagnetic particle based solid phase extraction to develop an all-in-one scheme that performs cell lysis, DNA binding, washing, elution and the PCR in the same reaction chamber. The device also employs a unique reagent loading scheme, allowing efficient preparation of multiple reactions via a single injection channel. In addition, PCR is performed in a droplet-in-oil manner, eliminating the need for chamber sealing. The combination of these design features greatly reduces the complexity in implementing fully integrated lab-on-a-chip systems for genetic detection, facilitating parallel analysis of multiple samples or genes on a single microchip. The capability of the device is demonstrated by performing DNA isolation from the human whole blood sample and analyzing the Rsf-1 gene using the TaqMan probe based gene specific PCR assays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • M.C. Breadmore, K.A. Wolfe et al., Microchip-based purification of DNA from biological samples. Anal. Chem. 75(8), 1880–1886 (2003)

    Article  Google Scholar 

  • M.A. Burns, B.N. Johnson et al., An integrated nanoliter DNA analysis device. Science 282(5388), 484–487 (1998)

    Article  Google Scholar 

  • N.C. Cady, S. Stelick et al., Nucleic acid purification using microfabricated silicon structures. Biosens. Bioelectron. 19(1), 59–66 (2003)

    Article  Google Scholar 

  • N.C. Cady, S. Stelick et al., Real-time PCR detection of Listeria monocytogenes using an integrated microfluidics platform. Sens. Actuators, B 107(1), 332–341 (2005)

    Article  Google Scholar 

  • J.F. Chen, M. Wabuyele et al., Electrokinetically synchronized polymerase chain reaction microchip fabricated in polycarbonate. Anal. Chem. 77(2), 658–666 (2005)

    Article  Google Scholar 

  • A.J. deMello, Control and detection of chemical reactions in microfluidic systems. Nature 442(7101), 394–402 (2006)

    Article  Google Scholar 

  • K.D. Dorfman, M. Chabert et al., Contamination free continuous flow microfluidic polymerase chain reaction for quantitative and clinical applications. Anal. Chem. 77(11), 3700–3704 (2005)

    Article  Google Scholar 

  • C.J. Easley, J.M. Karlinsey et al., A fully integrated microfluidic genetic analysis system with sample-in-answer-out capability. Proc. Natl. Acad. Sci. 103(51), 19272–19277 (2006)

    Article  Google Scholar 

  • J. El-Ali, P.K. Sorger et al., Cells on chips. Nature 442(7101), 403–411 (2006)

    Article  Google Scholar 

  • I. Erill, S. Campoy et al., Biochemical analysis and optimization of inhibition and adsorption phenomena in glass-silicon PCR-chips. Sens. Actuators, B 96(3), 685–692 (2003)

    Article  Google Scholar 

  • M.A.M. Gijs, Magnetic bead handling on-chip: new opportunities for analytical applications. Microfluid. Nanofluid. 1(1), 22–40 (2004)

    Google Scholar 

  • J. Grym, M. Otevrel et al., Aerodynamic mass spectrometry interfacing of microdevices without electrospray tips. Lab Chip 6(10), 1306–1314 (2006)

    Article  Google Scholar 

  • N.A. Guzman, Improved solid-phase microextraction device for use in on-line immunoaffinity capillary electrophoresis. Electrophoresis 24(21), 3718–3727 (2003)

    Article  Google Scholar 

  • E. Harel, Magnetic resonance detection: spectroscopy and imaging of lab-on-a-chip. Lab Chip 9(1), 17–23 (2009)

    Article  Google Scholar 

  • D. Janasek, J. Franzke et al., Scaling and the design of miniaturized chemical-analysis systems. Nature 442(7101), 374–380 (2006)

    Article  Google Scholar 

  • L.A. Legendre, J.M. Bienvenue et al., A simple, valveless microfluidic sample preparation device for extraction and amplification of DNA from nanoliter-volume samples. Anal. Chem. 78(5), 1444–1451 (2006)

    Article  Google Scholar 

  • U. Lehmann, C. Vandevyver et al., Droplet-based DNA purification in a magnetic lab-on-a-chip. Angew. Chem. Int. Ed. 45(19), 3062–3067 (2006)

    Article  Google Scholar 

  • R.H. Liu, J. Yang et al., Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection. Anal. Chem. 76(7), 1824–1831 (2004)

    Article  Google Scholar 

  • K.A. Melzak, C.S. Sherwood et al., Driving forces for DNA adsorption to silica in perchlorate solutions. J. Colloid Interface Sci. 181(2), 635–644 (1996)

    Article  Google Scholar 

  • Z.Q. Niu, W.Y. Chen et al., DNA amplification on a PDMS-glass hybrid microchip. J. Micromech. Microeng. 16(2), 425–433 (2006)

    Article  Google Scholar 

  • M.A. Northrup, B. Benett et al., A miniature analytical instrument for nucleic acids based on micromachined silicon reaction chambers. Anal. Chem. 70(5), 918–922 (1998)

    Article  Google Scholar 

  • T. Ohashi, H. Kuyama et al., A simple device using magnetic transportation for droplet-based PCR. Biomed. Microdevices 9(5), 695–702 (2007)

    Article  Google Scholar 

  • R.D. Oleschuk, L.L. Shultz-Lockyear et al., Trapping of bead-based reagents within microfluidic systems: On-chip solid-phase extraction and electrochromatography. Anal. Chem. 72(3), 585–590 (2000)

    Article  Google Scholar 

  • J. Pipper, M. Inoue et al., Catching bird flu in a droplet. Nat. Med. 13, 1259–1263 (2007)

    Article  Google Scholar 

  • J. Pipper, Y. Zhang et al., Clockwork PCR including sample preparation. Angew. Chem. Int. Ed. 47(21), 3900–3904 (2008)

    Article  Google Scholar 

  • C.W. Price, D.C. Leslie et al, Nucleic acid extraction techniques and application to the microchip. Lab Chip 9(17), (2009)

  • D. Psaltis, S.R. Quake et al., Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442(7101), 381–386 (2006)

    Article  Google Scholar 

  • T.D. Rane, C.M. Puleo et al., Counting single molecules in sub-nanolitre droplets. Lab Chip 10(2), 161–164 (2010)

    Article  Google Scholar 

  • Y. Saito, K. Jinno, Miniaturized sample preparation combined with liquid phase separations. J. Chromatogr. A 1000(1–2), 53–67 (2003)

    Google Scholar 

  • L.M. Shih, J.J.C. Sheu et al., Amplification of a chromatin remodeling gene, Rsf-1/HBXAP, in ovarian carcinoma. Clin. Cancer Res. 11(24), 9161S–9161S (2005)

    Google Scholar 

  • Y.S. Shin, K. Cho et al., PDMS-based micro PCR chip with parylene coating. J. Micromech. Microeng. 13(5), 768–774 (2003)

    Article  Google Scholar 

  • T. Vilkner, D. Janasek et al., Micro total analysis systems. Recent developments. Anal. Chem. 76(12), 3373–3385 (2004)

    Article  Google Scholar 

  • T.H. Wang, Y.H. Peng et al., Single-molecule tracing on a fluidic microchip for quantitative detection of low-abundance nucleic acids. J. Am. Chem. Soc. 127(15), 5354–5359 (2005)

    Article  Google Scholar 

  • J. Wen, L.A. Legendre et al., Purification of nucleic acids in microfluidic devices. Anal. Chem. 80(17), 6472–6479 (2008)

    Article  Google Scholar 

  • J. West, M. Boerlin et al., Silicon microstructure arrays for DNA extraction by solid phase sample contacting at high flow rates. Sens. Actuators, B 126, 664–671 (2007)

    Article  Google Scholar 

  • A.T. Woolley, D. Hadley et al., Functional integration of PCR amplification and capillary electrophoresis in a microfabricated DNA analysis device. Anal. Chem. 68(23), 4081–4086 (1996)

    Article  Google Scholar 

  • Q. Xiang, B. Xu et al., Miniature real time PCR on chip with multi-channel fiber optical fluorescence detection module. Biomed. Microdevices 9(4), 443–449 (2007)

    Article  Google Scholar 

  • H.C. Yeh, S.Y. Chao et al., Single-molecule detection and probe strategies for rapid and ultrasensitive genomic detection. Curr. Pharm. Biotechnol. 6(6), 453–461 (2005)

    Article  Google Scholar 

  • P.K. Yuen, L.J. Kricka et al., Microchip module for blood sample preparation and nucleic acid amplification reactions. Genome Res. 11(3), 405–412 (2001)

    Article  Google Scholar 

  • C.S. Zhang, J.L. Xu et al., PCR microfluidic devices for DNA amplification. Biotechnol. Adv. 24(3), 243–284 (2006)

    Article  Google Scholar 

  • Y. Zhang, V. Bailey et al., DNA methylation analysis on a droplet-in-oil PCR array. Lab Chip 9(8), 1059–1064 (2009)

    Article  Google Scholar 

Download references

Acknowledgement

The authors would like to thank the funding from NIH (R21-CA120742, U54-AI057168-07), NSF (0546012, 0725528, 0730503), and DARPA Micro/Nano Fluidics Fundamentals Focus (MF3) Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tza-Huei Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 720 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Park, S., Yang, S. et al. An all-in-one microfluidic device for parallel DNA extraction and gene analysis. Biomed Microdevices 12, 1043–1049 (2010). https://doi.org/10.1007/s10544-010-9458-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-010-9458-6

Keywords

Navigation