Skip to main content
Log in

Advanced microfluidic droplet manipulation based on piezoelectric actuation

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

As droplet-based microfluidic devices evolve, the demand for simple-to-fabricate droplet manipulation modules increases. Of these modules, droplet sorting has drawn much attention due to its ability not only to enrich, but also to selectively isolate droplet subpopulations of interest. In this paper, we present an innovative piezoelectric-driven droplet sorter that is simple to fabricate, reproducible and robust, which provides extensive control over spatio-temporal droplet pattern. This degree of control is demonstrated by sorting droplets of alternating volumes and by grouping defined number of droplets into traveling clusters. The ability to automatically sort droplets is demonstrated by computerized detection and sorting of droplets based on their color. The sorter performance was investigated and found to work on a wide range of sorting parameters. The sorter is created by a single step fabrication process and does not rely on complex electronics or optics. These advantages simplify the adoption of droplet-based microfluidic technology by the scientific community and provide an ideal platform for single cell assays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • K. Ahn, C. Kerbage, T.P. Hunt, R.M. Westervelt, D.R. Link, D.A. Weitz, Appl. Phys. Lett. 88, 024104 (2006)

    Article  Google Scholar 

  • S.L. Anna, N. Bontoux, H.A. Stone, Appl. Phys. Lett. 82, 364–366 (2003)

    Article  Google Scholar 

  • J.C. Baret, O.J. Miller, V. Taly, M. Ryckelynck, A. El-Harrak, L. Frenz, C. Rick, M.L. Samuels, J.B. Hutchison, J.J. Agresti, D.R. Link, D.A. Weitz, A.D. Griffiths, Lab Chip 9, 1850–1858 (2009)

    Article  Google Scholar 

  • C.N. Baroud, J.P. Delville, F. Gallaire, R. Wunenburger, Phys. Rev. E 75, 046302 (2007)

    Article  Google Scholar 

  • A. Bransky, N. Korin, M. Khoury, S. Levenberg, Lab Chip 9, 516–520 (2009)

    Article  Google Scholar 

  • E. Brouzes, M. Medkova, N. Savenelli, D. Marran, M. Twardowski, J.B. Hutchison, J.M. Rothberg, D.R. Link, N. Perrimon, M.L. Samuels, Proc. Natl. Acad. Sci. USA. 106, 14195–14200 (2009)

    Article  Google Scholar 

  • C.H. Chen, S.H. Cho, F. Tsai, A. Erten, Y. Lo, Biomed. Microdevices 11, 1223–1231 (2009)

    Article  Google Scholar 

  • J. Clausell-Tormos, D. Lieber, J.C. Baret, A. El-Harrak, O.J. Miller, L. Frenz, J. Blouwolff, K.J. Humphry, S. Köster, H. Duan, C. Holtze, D.A. Weitz, A.D. Griffiths, C.A. Merten, Chem. Biol. 15, 427–437 (2008)

    Article  Google Scholar 

  • K. Cottingham, Anal. Chem. 77, 73A–76A (2005)

    Google Scholar 

  • P.S. Dittrich, A. Manz, Nat. Rev. Drug Discov. 5, 210–218 (2006)

    Article  Google Scholar 

  • J.F. Edd, D. Di Carlo, K.J. Humphry, S. Köster, D. Irimia, D.A. Weitz, M. Toner, Lab Chip 8, 1262–1264 (2008)

    Article  Google Scholar 

  • W. Engl, M. Roche, A. Colin, P. Panizza, A. Ajdari, Phys. Rev. Lett. 95, 208304 (2005)

    Article  Google Scholar 

  • T. Franke, A. R. Abate, D. A. Weitz, A. Wixforth, Lab Chip, (2009). doi:10.1039/b906819h

  • P.R.C. Gascoyne, J.V. Vykoukal, J.A. Schwartz, T.J. Anderson, D.M. Vykoukal, K.W. Current, C. McConaghy, F.F. Becker, C. Andrews, Lab Chip 4, 299–309 (2004)

    Article  Google Scholar 

  • A. Huebner, S. Sharma, M. Srisa-Art, F. Hollfelder, J.B. Edel, A.J. deMello, Lab Chip 8, 1244–1254 (2008)

    Article  Google Scholar 

  • L.H. Hung, K.M. Choi, W.Y. Tseng, Y.C. Tan, K.J. Shea, A.P. Lee, Lab Chip 6, 174–178 (2006)

    Article  Google Scholar 

  • H.N. Joensson, M.L. Samuels, E.R. Brouzes, M. Medkova, M. Uhlén, D.R. Link, H. Andersson-Svahn, Angew. Chem. 48, 2518–2521 (2009)

    Article  Google Scholar 

  • S. Köster, F.E. Angilè, H. Duan, J.J. Agresti, A. Wintner, C. Schmitz, A.C. Rowat, C.A. Merten, D. Pisignano, A.D. Griffiths, D.A. Weitz, Lab Chip 8, 1110–1115 (2008)

    Article  Google Scholar 

  • J.R. Kovac, J. Voldman, Anal. Chem. 79, 9321–9330 (2007)

    Article  Google Scholar 

  • D.J. Laser, J.G. Santiago, J. Micromech, Microeng. 14, R35–R64 (2004)

    Article  Google Scholar 

  • L. Mazutis, J.C. Baret, A.D. Griffiths, Lab Chip 9, 2665–2672 (2009)

    Article  Google Scholar 

  • M.A. McClain, C.T. Culbertson, S.C. Jacobson, J.M. Ramsey, Anal. Chem. 73, 5334–5338 (2001)

    Article  Google Scholar 

  • E. Miller, M. Rotea, J. P. Rothstein, Lab chip (2010). doi:10.1039/b925497h

  • R. Mukhopadhyay, Anal. Chem. 77, 429A–432A (2005)

    Google Scholar 

  • L.S. Pan, T.Y. Ng, X.H. Wu, H.P. Lee, J. Microelectromech, Syst 13, 390–399 (2003)

    Google Scholar 

  • R. Sista, Z. Hua, P. Thwar, A. Sudarsan, V. Srinivasan, A. Eckhardt, M. Pollack, V. Pamula, Lab Chip 8, 2091–2104 (2008)

    Article  Google Scholar 

  • H. Song, M.R. Bringer, J.D. Tice, C.J. Gerdts, R.F. Ismagilov, Appl. Phys. Lett. 83, 4664–4666 (2003a)

    Article  Google Scholar 

  • H. Song, J.D. Tice, R.F. Ismagilov, Angew. Chem. 42, 768–772 (2003b)

    Article  Google Scholar 

  • H. Song, D.L. Chen, R.F. Ismagilov, Angew. Chem. 45, 7336–7356 (2006)

    Article  Google Scholar 

  • S. Teh, R. Lin, L. Hung, A.P. Lee, Lab Chip 8, 198–220 (2008)

    Article  Google Scholar 

  • J. Teissie, M. Golzio, M.P. Rols, Biochim. Biophys. Acta 1724, 270–280 (2005)

    Google Scholar 

  • T.H. Ting, Y.F. Yap, N.T. Nguyen, T.N. Wong, J.C.K. Chai, L. Yobas, Appl. Phys. Lett. 89, 234101 (2006)

    Article  Google Scholar 

  • A. van den Berg, Lab Chip 8, 1779–1780 (2008)

    Article  Google Scholar 

  • S.A. Vanapalli, A.G. Banpurkar, D. van den Ende, M.H.G. Duits, F. Mugele, Lab Chip 9, 982–990 (2009)

    Article  Google Scholar 

  • Y. Zhang, V. Bailey, C.M. Puleo, H. Easwaran, E. Griffiths, J.G. Herman, S.B. Baylin, T.H. Wang, Lab Chip 9, 1059–1064 (2009a)

    Article  Google Scholar 

  • C. Zhang, K. Khoshmanesh, A. Mitchell and K. Kalantar-zadeh. Anal Bioanal. Chem. (2009b). doi:10.1007/s00216-009-2922-6

  • B. Zheng, R.F. Ismagilov, Angew. Chem. 44, 2520–2523 (2005)

    Article  Google Scholar 

  • B. Zheng, J.D. Tice, L.S. Roach, R.F. Ismagilov, Angew. Chem. 116, 2562–2565 (2004)

    Article  Google Scholar 

  • S. Zheng, J.Q. Liu, Y.C. Tai, J. Microelectromech, Syst 17, 1029–1038 (2008)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Russell Berrie Nanotechnology Institute, Technion, Israel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shulamit Levenberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shemesh, J., Bransky, A., Khoury, M. et al. Advanced microfluidic droplet manipulation based on piezoelectric actuation. Biomed Microdevices 12, 907–914 (2010). https://doi.org/10.1007/s10544-010-9445-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-010-9445-y

Keywords

Navigation