Skip to main content
Log in

An integrated microfluidic chip for non-immunological determination of urinary albumin

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

This study presents an integrated microfluidic chip for non-immunologically determining the concentrations of albumin in clinical urine samples. This microchip integrates membrane-type micromixers and a fan-shaped micropump capable of simultaneously and precisely delivering assay reagents to react with 6 urine samples in one single operation. The experimental results show that the coefficient of variation in the pumping rate is 2.42%. More importantly, using this unique chip design, only 2 electromagnetic valves are required for the actuation of the micromixer and the micropump. The working range of the proposed microchip is 2–200 mg/L of albumin, which covers the range of interest for the determination of microalbuminuria. Moreover, statistical analysis show that the results obtained by the proposed microchip are in good agreement with the conventional detection method, based on immunological assays. This simple, inexpensive and microchip-based platform presents a promising alternative to conventional immunological assays for measurement of urinary albumin, and is well suited for clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AB:

albumin blue

AER:

albumin excretion rate

BioFET:

biological field-effect transistor

CVs:

coefficients of variation

CNC:

computer-numerically controlled

CI:

confidence interval

DS:

dextran sulfate

EMVs:

electromagnetic valves

ELISA:

enzyme-linked immunosorbent assay

HSA:

human serum albumin

LOD:

limit of detection

MAU:

microalbuminuria

MOSFET:

metal oxide semiconductor field effect transistor

MIP:

molecularly imprinted polymer

NaOH:

sodium hydroxide

NCVs:

normally closed valves

PB:

polybrene

PDMS:

poly(dimethylsiloxane)

PMMA:

polymethylmethacrylate

QCM:

quartz crystal microbalance

SAM:

self-assembled monolayer

SD:

standard deviation

References

  • C. Aybay, R. Karakus, Turk. J. Med. Sci. 33(1), 1 (2003)

    Google Scholar 

  • E.A. Bessonova, L.A. Kartsova, A.U. Shmukov, J. Chromatogr. A 1150(1–2), 332 (2007)

    Article  Google Scholar 

  • J.M. Bland, D.G. Altman, Stat. Meth. Med. Res. 8(2), 135 (1999)

    Article  Google Scholar 

  • O.T.M. Chan, D.A. Herold, Clin. Chem. 52(11), 2141 (2006)

    Article  Google Scholar 

  • H. Chase, G. Marshall, S. Garg, S. Harris, I. Osberg, Clin. Chem. 37(12), 2048 (1991)

    Google Scholar 

  • B.M. Chavers, J. Simonson, A.F. Michael, Kidney Int. 25(3), 576 (1984)

    Article  Google Scholar 

  • M. Dockal, D.C. Carter, F. Rüker, J. Biol. Chem. 275(5), 3042 (2000)

    Article  Google Scholar 

  • S.J. Frost, J. Chakraborty, G.B. Firth, J. Immunol. Methods 194(2), 105 (1996)

    Article  Google Scholar 

  • S. Haffner, M. Stern, M. Gruber, H. Hazuda, B. Mitchell, J. Patterson, Arterioscl. Throm. Vas. 10(5), 727 (1990)

    Google Scholar 

  • O. Hofmann, X. Wang, J.C. deMello, D.D.C. Bradley, A.J. deMello, Lab Chip 5(8), 863 (2005)

    Article  Google Scholar 

  • C.H. Hu, T.C. Chou, T.Y. Lin, Int. Conf. on Bio-Nano-Information (BNI) Fusion (CA, USA, July 20-22, 2005), pp. 20-22.

  • A.E. Kamholz, B.H. Weigl, B.A. Finlayson, P. Yager, Anal. Chem. 71(23), 5340 (1999)

    Article  Google Scholar 

  • M.A. Kessler, O.S. Wolfbeis, Anal. Biochem. 200(2), 254 (1992)

    Article  Google Scholar 

  • M.A. Kessler, M. Hubmann, B. Dremel, O. Wolfbeis, Clin. Chem. 38(10), 2089 (1992)

    Google Scholar 

  • M.A. Kessler, A. Meinitzer, W. Petek, O.S. Wolfbeis, Clin. Chem. 43(6), 996 (1997a)

    Google Scholar 

  • M.A. Kessler, A. Meinitzer, O.S. Wolfbeis, Anal. Biochem. 248(1), 180 (1997b)

    Article  Google Scholar 

  • C.H. Kuo, J.H. Wang, G.B. Lee, Electrophoresis 30(18), 3228 (2009)

    Article  Google Scholar 

  • C.S. Liao, G.B. Lee, J.J. Wu, C.C. Chang, T.M. Hsieh, F.C. Huang, C.H. Luo, Biosens. Bioelectron. 20(7), 1341 (2005)

    Article  Google Scholar 

  • C.H. Lin, C.H. Tsai, L.M. Fu, J. Micromechanics Microengineering 15(5), 935 (2005)

    Article  Google Scholar 

  • Y. Liu, D.J. Pietrzyk, Anal. Chem. 72(24), 5930 (2000)

    Article  Google Scholar 

  • M. Lu, F. Ibraimi, D. Kriz, K. Kriz, Biosens. Bioelectron. 21(12), 2248 (2006)

    Article  Google Scholar 

  • C. Lydakis, G. Lip, Q. J. Med. 91(6), 381 (1998)

    Google Scholar 

  • A. Manz, N. Graber, H.M. Widmer, Sens. Actuators, B 1(1–6), 244 (1990)

    Article  Google Scholar 

  • J.C. McDonald, D.C. Duffy, J.R. Anderson, D.T. Chiu, H. Wu, O.J.A. Schueller, G.M. Whitesides, Electrophoresis 21(1), 27 (2000)

    Article  Google Scholar 

  • C.E. Mogensen, Kidney Int. 31(2), 673 (1987)

    Article  Google Scholar 

  • I. Navrátilová, P. Skládal, V. Viklický, Talanta 55(4), 831 (2001)

    Article  Google Scholar 

  • K.M. Park, S.K. Lee, Y.S. Sohn, S.Y. Choi, Electron. Lett. 44(3), 185 (2008)

    Article  Google Scholar 

  • H. Passing, W. Bablok, Clin. Chem. Lab. Med. 21(11), 709 (1983)

    Article  Google Scholar 

  • D.J.F. Rowe, A. Dawnay, G.F. Watts, Ann. Clin. Biochem. 27(4), 297 (1990)

    Google Scholar 

  • H. Thakkar, D.J. Newman, P. Holownia, C.L. Davey, C.C. Wang, J. Lloyd, A.R. Craig, C.P. Price, Clin. Chem. 43(1), 109 (1997)

    Google Scholar 

  • G. Viberti, J. Pickup, R. Jarrett, H. Keen, N. Engl. J. Med. 300(12), 638 (1979)

    Article  Google Scholar 

  • J. Vigstrup, C.E. Mogensen, Acta Ophthalmol. 63(5), 530 (1985)

    Article  Google Scholar 

  • K. Waller, K. Ward, J. Mahan, D. Wismatt, Clin. Chem. 35(5), 755 (1989)

    Google Scholar 

  • C.H. Wang, G.B. Lee, Biosens. Bioelectron. 21(3), 419 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  • Y.N. Yang, S.K. Hsiung, G.B. Lee, Microfluid. Nanofluid. 6(6), 823 (2009a)

    Article  Google Scholar 

  • S.Y. Yang, J.L. Lin, G.B. Lee, J. Micromechanics Microengineering 19(3), 035020 (2009b)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support provided to this study by the National Science Council in Taiwan (NSC 97–2120-M-006–007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gwo-Bin Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, CC., Tseng, CC., Huang, CJ. et al. An integrated microfluidic chip for non-immunological determination of urinary albumin. Biomed Microdevices 12, 887–896 (2010). https://doi.org/10.1007/s10544-010-9443-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-010-9443-0

Keywords

Navigation