Skip to main content

Advertisement

Log in

Weak solvent based chip lamination and characterization of on-chip valve and pump

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Using polystyrene as a fabrication material and pure acetonitrile as a bonding solvent, we have developed an innovative and inexpensive weak-solvent-based chip lamination process to produce highly functional, completely plastic, microfluidic chips with a 3-layer structure. This simple, scalable and rapid method allows active components, such as multiple valves and pumps, to be constructed on chip with a thin, deflectable film as the middle layer sandwiched between two polystyrene layers. Our irreversible bonding method achieves uniform lamination under mild conditions (35–45°C and 10–50 KPa) without damage to the underlying micro-features. The on-chip valve and pump structures have been systematically characterized and the pumping rate has been compared against theoretical rates predicted by mathematical modeling studies. A wide range of pumping rates (0.33–10 μL/s) can be achieved, with the integral pumps maintaining a constant pumping rate and depending on pumping frequency and pump diaphragm size. Valve leakage of less than 0.02 μL/min is noted under pressures of 41 kPa. Utilizing various configurations of on-chip valves and pumps, the fully automated flow control of an integrated chip for sample lysis, nucleic acid purification and PCR is demonstrated. The present technology and chip have been heavily evaluated internally and externally for rapid biomedical diagnosis of HPV, HIV, etc., and they are currently in the process of commercialization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • A. Baldi, Y.D. Gu, P.E. Loftness, R.A. Siegel, B. Ziaie, J Microelectromech Syst 12, 613 (2003)

    Article  Google Scholar 

  • H.H. Bau, J. Zhu, S. Qian, Y. Xiang, Sensor Actuator B 88, 205 (2003)

    Article  Google Scholar 

  • L. Brown, T. Koerner, J.H. Horton, R.D. Oleschuk, Lab Chip 6, 66 (2006)

    Article  Google Scholar 

  • D.J. Beebe, J.S. Moore, J.M. Bauer, Q. Yu, R.H. Liu, C. Devadoss, B.H. Jo, Nature 404, 588 (2000)

    Article  Google Scholar 

  • A. Brask, J.P. Kutter, H. Bruus, Lab Chip 5, 730 (2005)

    Article  Google Scholar 

  • K.K. Chee, Malaysian J Chem 7, 57 (2005)

    Google Scholar 

  • Z. Chen, M.G. Mauk, J. Wang, W.R. Abrams, P. Corstjens, R.S. Niedbala, D. Malamud, H.H. Bau, Ann. NY Acad. Sci. 1098, 429 (2007)

    Article  Google Scholar 

  • Z. Chen, J. Wang, S. Qian, H.H. Bau, Lab Chip 5, 1277 (2005)

    Article  Google Scholar 

  • J.S. Go, S. Shoji, Sensor Actuator A 114, 438 (2004)

    Article  Google Scholar 

  • D.W. Green, R.H. Perry, Perry's chemical engineers' handbook, 8th edn. (McGraw-Hill, New York, 2008)

    Google Scholar 

  • W.H. Grover, A.M. Skelley, C.N. Liu, E.T. Lagally, R.A. Mathies, Sensor Actuator B 89, 315 (2003)

    Article  Google Scholar 

  • W. Gu, H. Chen, Y.C. Tung, J.C. Meiners, S. Takayama, Applied Physics Letters 90, 033505 (2007)

    Article  Google Scholar 

  • A. Hatch, E. Kamholz, G. Holman, P. Yager, K. Bohringer, J Microelectromech Syst 10, 215 (2001)

    Article  Google Scholar 

  • Y. He, Y.H. Zhang, E.S. Yeung, J. Chromatogr. A 924, 271 (2001)

    Article  Google Scholar 

  • H.B. Hopfenberg, L. Nicolais, E. Drioli, Polymer 17, 195 (1976)

    Article  Google Scholar 

  • Z. Hua, R. Pal, O. Srivannavit, M.A. Burns, E. Gulari, Lab Chip 8, 488 (2008)

    Article  Google Scholar 

  • V. Lemoff, A.P. Lee, Sensor Actuator B 63, 178 (2000)

    Article  Google Scholar 

  • R.H. Liu, J. Yang, R. Lenigk, J. Bonanno, P. Grodzinski, Anal. Chem. 76, 1824 (2004a)

    Article  Google Scholar 

  • R.H. Liu, J. Bonanno, J.N. Yang, R. Lenigk, P. Grodzinski, Sensor Actuator B 98, 328 (2004b)

    Article  Google Scholar 

  • Q. Luo, S. Mutlu, Y.B. Gianchandani, F. Svec, J.M.J. Fréchet, Electrophoresis 24, 3694 (2003)

    Article  Google Scholar 

  • D.A. Mair, M. Rolandi, M. Snauko, R. Noroski, F. Svec, J.M.J. Fréchet, Anal. Chem. 79, 5097 (2007)

    Article  Google Scholar 

  • L. Martynova, L.E. Locascio, M. Gaitan, G.W. Kramer, R.G. Christensen, W.A. MacCrehan, Anal. Chem. 69, 4783 (1997)

    Article  Google Scholar 

  • J.C. McDonald, D.C. Duffy, J.R. Anderson, D.T. Chiu, H. Wu, O.J. Schueller, G.M. Whitesides, Electrophoresis 21, 27 (2000)

    Article  Google Scholar 

  • S.H. Ng, R.T. Tjeung, Z.F. Wang, A.C.W. Lu, I. Rodriguez, N.F. de Rooij, Microsyst. Technol. 14, 753 (2008)

    Article  Google Scholar 

  • R. Pal, M. Yang, B.N. Johnson, D.T. Burke, M.A. Burns, Anal. Chem. 76, 3740 (2004)

    Article  Google Scholar 

  • J. Pipper, M. Inoue, L.F. Ng, P. Neuzil, Y. Zhang, L. Novak, Nat. Med. 13, 1259 (2007)

    Article  Google Scholar 

  • J.J. Shah, J. Geist, L.E. Locascio, M. Gaitan, M.V. Rao, W.N. Vreeland, Anal. Chem. 78, 3348 (2006)

    Article  Google Scholar 

  • H. Shinohara, T. Suzuki, F. Kitagawa, J. Mizuno, K. Otsuka, S. Shoji, Sensor Actuator B 132, 368 (2008)

    Article  Google Scholar 

  • J. Steigert, S. Haeberle, T. Brenner, C. Müller, C.P. Steinert, P. Koltay, N. Gottschlich, H. Reinecke, J. Rühe, R. Zengerle, J. Ducrée, J. Micromech. Microeng. 17, 333 (2007)

    Article  Google Scholar 

  • C.W. Tsao, L. Hromada, J. Liu, P. Kumar, D.L. DeVoe, Lab Chip 7, 499 (2007)

    Article  Google Scholar 

  • M.A. Unger, H.P. Chou, T. Thorsen, A. Scherer, S.R. Quake, Science 288, 113 (2000)

    Article  Google Scholar 

  • T.I. Wallow, A.M. Morales, B.A. Simmons, M.C. Hunter, K.L. Krafcik, L.A. Domeier, S.M. Sickafoose, K.D. Patel, A. Gardea, Lab Chip 7, 1825 (2007)

    Article  Google Scholar 

  • J. Wang, Z. Chen, M.G. Mauk, K. Hong, M. Li, S. Yang, H.H. Bau, Biomed. Microdevices 7, 313 (2005)

    Article  Google Scholar 

  • G.M. Whitesides, Nature 442, 368 (2006)

    Article  Google Scholar 

  • P. Yager, T. Edwards, E. Fu, K. Helton, K. Nelson, M.R. Tam, B.H. Weigl, Nature 442, 413 (2006)

    Article  Google Scholar 

  • L.C. Young, P. Zhou, United States Patent Application 20060076068, April 13, 2006.

  • S. Zeng, C.H. Chen, J.C. Mikkelsen, J.G. Santiago, Sensor Actuator B 79, 107 (2001)

    Article  Google Scholar 

  • P. Zhou, L.C. Young, United States Patent 7,608,160, October 27, 2009.

  • Z. Zou, J. Kai, M.J. Rust, J. Han, C.H. Ahn, Sensor Actuator A 136, 518 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

We wish to thank Dr. Richard Montagna for his editorial assistance and helpful discussions. The Rheonix engineering group is gratefully acknowledged for its support in all aspects of chip fabrication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Zhou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Esm 1

(DOC 831 kb)

(MPG 364 kb)

(MPG 4520 kb)

(MPG 1692 kb)

(MPG 2046 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, P., Young, L. & Chen, Z. Weak solvent based chip lamination and characterization of on-chip valve and pump. Biomed Microdevices 12, 821–832 (2010). https://doi.org/10.1007/s10544-010-9436-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-010-9436-z

Keywords

Navigation