Skip to main content

Advertisement

Log in

3D microfabricated bioreactor with capillaries

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

We present in this paper the implementation of an innovative three dimensional (3D) microfabrication technology coupled with numerical simulation to enhance the mass transport in 3D cell culture. The core of this microfabrication technology is a high-resolution projection micro stereolithography (PμSL) using a spatial light modulator as a dynamic mask which enables a parallel fabrication of highly complex 3D microstructures. In this work, a set of poly (ethylene glycol) microfabricated bioreactors are demonstrated with PμSL technology. We observed both experimentally and numerically the regulation of metabolism and the growth of yeast cells by controlling the density of micro-capillaries. Further development of these 3D microfabricated bioreactors is expected to provide artificially constructed tissues for clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • R. Dunn, S. Watson, Why climb a ladder when you can take the elevator? Plast Reconstr Surg 107, 283 (2001)

    Article  Google Scholar 

  • G.I. Taylor, J.H. Palmer, The vascular territories (angiosomes) of the body: experimental study and clinical applications. Br J Plast Surg 40, 113–141 (1987)

    Article  Google Scholar 

  • Francois Berthiaume and Martin L. Yarmush, Encyclopedia of Physical Science and Technology, 3rd edn. (Academic Press, 2002), 16, p817

  • Y.K. Ruben, J.S. Henryk, K. Sales, P. Butler, M.S. Alexander, The roles of tissue engineering and vascularisation in the development of micro-vascular networks: a review. Biomaterials 26, 1857–1875 (2005)

    Article  Google Scholar 

  • R.M. Sutherland et al. Oxygenation and differentiation in multicellular spherioids of human colon carcinoma. Cancer Res. 46, 5320–5329 (1986)

    Google Scholar 

  • I. Martin et al. Method for quantitative analysis of glycosaminoglycan distribution in cultured natural and engineered cartilage. Ann. Biomed. Eng. 27, 656–662 (1999)

    Article  Google Scholar 

  • T. Neumann, B.S. Nicholson, J.E. Sanders, Tissue engineering of perfused microvessels. Microvasc Res 66, 59–67 (2003)

    Article  Google Scholar 

  • L.G. Griffith, B. Wu, M.J. Cima, M.J. Powers, B. Chaignaud, J.P. Vacanti, In virto organogenesis of liver tissue. Ann NY Acad Sci 831, 382–97 (1997)

    Article  Google Scholar 

  • J.T. Borenstein et al. Microfabrication Technology for Vascularized Tissue Engineering. BMMD 4(3), 167–175 (2002)

    Google Scholar 

  • S. Levenberg, J. Rouwkema, M. Macdonald, E.S. Garfein, D.S. Kohane, D.C. Darland, R. Marini, C.A. Van Blitterswijk, R.C. Mulligan, P.A.D. Amore, R. Langer, Engineering vascularized skeletal muscle tissue. Nat Biotechnol 23, 879–884 (2005)

    Article  Google Scholar 

  • C. Sun, N. Fang, D.M. Wu, X. Zhang, Projection micro-stereolithography using digital micro-mirror dynamic mask. Sensors and Actuators A 121, 113–120 (2005)

    Article  Google Scholar 

  • B.D. Ratner, S.J. Bryant, Biomaterials:Where We Have Been and Where We Are Going. Annu. Rev. Biomed. Eng 6, 41–75 (2004)

    Article  Google Scholar 

  • Q. Hou, P.A. De Bank, M. Kevin, Shakesheff, Injectable scaffolds for tissue regeneration. J. Mater. Chem. 14, 1915–1923 (2004)

    Article  Google Scholar 

  • E. Manias, J. Chen, N. Fang, X. Zhang, Polymeric Micromechanical Components with tunable Stiffness. Appl Phys Lett 79(11), 1700–1702 (2001)

    Article  Google Scholar 

  • N. Fang, C. Sun, X. Zhang, Diffusion-limited photopolymerization in scanning micro-stereolithography. Appl. Phys. A 79, 1839–1842 (2004)

    Article  Google Scholar 

  • C.G. Xia, C. Sun, D.M. Wu, X. Zhang, N. Fang, 3D Microfabricated Bioreactors. NSTI-Nanotech 2, 140–143 (2006)

    Google Scholar 

  • L. Michaelis, M. Menten, Die Kinetik der Invertinwirkung. Biochem. Z. 49, 333–369 (1913)

    Google Scholar 

  • G.E. Briggs, J.B.S. Haldane, A note on the kinetics of enzyme action. Biochem. J. 19, 339 (1925)

    Google Scholar 

  • K. Otterstedt et al. Switching the mode of metabolism in the yeast Saccharomyces cerevisiae. EMBO reports 5(5), 532–537 (2004)

    Article  Google Scholar 

  • T.G. Kaufmann, E.F. Leonard, Mechanism of interfacial mass transfer in membrane transport. AIChE J. 14, 421 (1968)

    Article  Google Scholar 

  • F. Sherman, J. Hicks, Getting started with yeast. Methods in Enzymology 194, 3–21 (1991)

    Article  Google Scholar 

  • A.A. Vicente, M. Dluhy, E.C. Ferreira, M. Mota, J.A. Teixeira, Mass transfer properties of glucose and O2in Saccharomyces cerevisiae flocs. Biochem Eng J 2, 35–43 (1998)

    Article  Google Scholar 

  • C. Verduyn, T.P.L. Zomerdijk, J.P. Van Dijken, W.A. Scheffers, Continuous measurement of ethanol production by aerobic yeast suspension with and enzyme electrode. Appl Microbiol Biotechnol 19, 181–185 (1984)

    Article  Google Scholar 

Download references

Acknowledgement

This project was supported by the Gauthier Exploratory Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas X. Fang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, C., Fang, N.X. 3D microfabricated bioreactor with capillaries. Biomed Microdevices 11, 1309–1315 (2009). https://doi.org/10.1007/s10544-009-9350-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-009-9350-4

Keywords

Navigation