Biomedical Microdevices

, 11:1297

A microfluidic device for separation of amniotic fluid mesenchymal stem cells utilizing louver-array structures

  • Huei-Wen Wu
  • Xi-Zhang Lin
  • Shiaw-Min Hwang
  • Gwo-Bin Lee
Article

DOI: 10.1007/s10544-009-9349-x

Cite this article as:
Wu, HW., Lin, XZ., Hwang, SM. et al. Biomed Microdevices (2009) 11: 1297. doi:10.1007/s10544-009-9349-x

Abstract

Human mesenchymal stem cells can differentiate into multiple lineages for cell therapy and, therefore, have attracted considerable research interest recently. This study presents a new microfluidic device for bead and cell separation utilizing a combination of T-junction focusing and tilted louver-like structures. For the first time, a microfluidic device is used for continuous separation of amniotic stem cells from amniotic fluids. An experimental separation efficiency as high as 82.8% for amniotic fluid mesenchymal stem cells is achieved. Furthermore, a two-step separation process is performed to improve the separation efficiency to 97.1%. These results are based on characterization experiments that show that this microfluidic chip is capable of separating beads with diameters of 5, 10, 20, and 40 μm by adjusting the volume-flow-rate ratio between the flows in the main and side channels of the T-junction focusing structure. An optimal volume-flow-rate ratio of 0.5 can lead to high separation efficiencies of 87.8% and 85.7% for 5-μm and 10-μm beads, respectively, in a one-step separation process. The development of this microfluidic chip may be promising for future research into stem cells and for cell therapy.

Keywords

Amniotic fluidMSCSeparationMEMSMicrofluidics

Nomenclature

AF

amniotic fluid

AFMSC

amniotic fluid mesenchymal stem cell

Bio-MEMS

bio-micro-electro-mechanical-systems

BCRC

Bioeresource Collection and Research Center

CMOS

complementary-metal-oxide-semiconductor

DEP

dielectrophoretic

DIP

digital image processing

EOF

electroosmotic flow

FITC

fluorescein isothiocyanate

IgG

immunoglobulin G

MSC

mesenchymal stem cell

MEMS

micro-electro-mechanical-systems

ODEP

optically induced dielectrophoresis

PBS

phosphate buffered saline

PDMS

polydimethylsiloxane

PR

photoresist

RBC

red blood cell

SEM

scanning electron microscope

UV

ultraviolet

WBC

white blood cell

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Huei-Wen Wu
    • 1
  • Xi-Zhang Lin
    • 2
  • Shiaw-Min Hwang
    • 3
  • Gwo-Bin Lee
    • 1
  1. 1.Department of Engineering ScienceNational Cheng Kung UniversityTainanTaiwan
  2. 2.Department of MedicineNational Cheng Kung UniversityTainanTaiwan
  3. 3.Bioresource Collection and Research CenterFood Industry Research and Development InstituteHsinchuTaiwan