Biomedical Microdevices

, Volume 10, Issue 1, pp 123-128

First online:

Evaluating the process of polishing borosilicate glass capillaries used for fabrication of in-vitro fertilization (iVF) micro-pipettes

  • Mayur YaulAffiliated withMedway School of Engineering, University of Greenwich Email author 
  • , Raj BhattiAffiliated withMedway School of Engineering, University of Greenwich
  • , Stephen LawrenceAffiliated withHunter Scientific Ltd.

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


In this paper we investigate a number of gas flames for fire polishing borosilicate glass capillaries used in the manufacturing of IVF micro-pipettes. Hydrofluoric acid (HF) was also used as an alternative to finish the pipette end. Glass micro tools in the IVF industry are drawn from hollow glass capillaries of diameter 1 mm. These capillaries are cut manually to a length of 100 mm from hollow glass rods resulting in sharp and chipped edges. These capillaries are held in a customised holder having padding of soft silicone or rubber. Sharp and uneven edges of these capillaries pick up particles of rubber or soft silicone shavings, rendering them ineffective for IVF treatments. The working range of borosilicate glass is 800–1,200°C. The experiments involved analysis of fire polishing process for borosilicate glass capillaries using candle, butane, propane, 2350 butane propane, oxyacetylene gas flames, finding the optimum distance of the capillary relative to the flame, optimum time for which the capillary should be held in the flame and optimum region of the flame which gives the required temperature range. The results show that 2350 butane propane gas mix is optimum for fire polishing of borosilicate glass capillaries. The paper is concluded by comparing the results of fire polishing with the results of acid polishing, in which HF of 1.6% concentration is used to etch the ends of the borosilicate glass pipettes.


Firepolishing Micro-pipettes In-vitro fertilization Borosilicate glass