Skip to main content
Log in

Design and fabrication of an artificial cornea based on a photolithographically patterned hydrogel construct

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

We describe the design and fabrication of an artificial cornea based on a photolithographically patterned hydrogel construct, and demonstrate the adhesion of corneal epithelial and fibroblast cells to its central and peripheral components, respectively. The design consists of a central “core” optical component and a peripheral tissue-integrable “skirt.” The core is composed of a poly(ethylene glycol)/poly(acrylic acid) (PEG/PAA) double-network with high strength, high water content, and collagen type I tethered to its surface. Interpenetrating the periphery of the core is a microperforated, but resilient poly(hydroxyethyl acrylate) (PHEA) hydrogel skirt that is also surface-modified with collagen type I. The well-defined microperforations in the peripheral component were created by photolithography using a mask with radially arranged chrome discs. Surface modification of both the core and skirt elements was accomplished through the use of a photoreactive, heterobifunctional crosslinker. Primary corneal epithelial cells were cultured onto modified and unmodified PEG/PAA hydrogels to evaluate whether the central optic material could support epithelialization. Primary corneal fibroblasts were seeded onto the PHEA hydrogels to evaluate whether the peripheral skirt material could support the adhesion of corneal stromal cells. Cell growth in both cases was shown to be contingent on the covalent tethering of collagen. Successful demonstration of cell growth on the two engineered components was followed by fabrication of core-skirt constructs in which the central optic and peripheral skirt were synthesized in sequence and joined by an interpenetrating diffusion zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • D.R. Albrecht, V.L. Tsang, R.L. Sah, and S.N. Bhatia, Lab Chip 5, 111–118 (2005).

    Article  Google Scholar 

  • J.V. Aquavella, G.N. Rao, A.C. Brown, and J.K. Harris, Ophthalmology 89, 655–660 (1982).

    Google Scholar 

  • L. Aucoin, C.M. Griffith, G. Pleizier, Y. Deslandes, and H. Sheardown, J. Biomater. Sci. Polym. Ed. 13, 447–462 (2002).

    Article  Google Scholar 

  • A. Bakri, N. Farooqui, D. Myung, W.G. Koh, J. Noolandi, M. Carrasco, C. Frank, and C.N. Ta, Invest. Ophthalmol. Vis. Sci. 47:(E-Abstract 3592), (2006).

  • J.C. Barber, Int. Ophthalmol. Clin. 28, 103–109 (1988).

    Article  Google Scholar 

  • H. Cardona, Refract. Corneal. Surg. 7, 468–471 (1991).

    Google Scholar 

  • D.J. Carlsson, F. Li, S. Shimmura, and M. Griffith, Curr. Opin. Ophthalmol. 14, 192–197 (2003).

    Article  Google Scholar 

  • T.V. Chirila, Biomaterials 22, 3311–3317 (2001).

    Article  Google Scholar 

  • G.M. Cruise, D.S. Scharp, and J.A. Hubbell, Biomaterials 19, 1287–1294 (1998).

    Article  Google Scholar 

  • C. Czeslik, G. Jackler, T. Hazlett, E. Gratton, R. Steitz, A. Wittemann, and M. Ballauff, Physical Chemistry Chemical Physics 6, 5557–5563 (2004).

    Article  Google Scholar 

  • M.G. Doane, C.H. Dohlman, and G. Bearse, Cornea 15, 179–184 (1996).

    Article  Google Scholar 

  • C. Gao, X. Hu, Y. Hong, J. Guan, and J. Shen, J. Biomater. Sci., Polym. Ed. 14, 937–950 (2003).

    Article  Google Scholar 

  • J.P. Gong, Y. Katsuyama, T. Kurokawa, and Y. Osada, Adv. Mater. 15, 1155–1158 (2003).

    Article  Google Scholar 

  • M. Griffith,M.A. Watsky, C.Y. Liu, and V.T. Randall, In: A. Atala and R.P. Lanza (Eds.),Epithelial Cell Culture: Cornea, in Methods of Tissue Engineering (Academic Press, San Francisco, 2002) pp. 131–140.

  • J. Guan, C. Gao, F. Linxian, and J. Sheng, J. Biomater. Sci., Polym. Ed. 11, 523–536 (2000).

    Article  Google Scholar 

  • A. Halperin, Langmuir 15, 2525–2533 (1999).

    Article  Google Scholar 

  • C.R. Hicks, T.V. Chirila, P.D. Dalton, A.B. Clayton, S. Vijayasekaran, G.J. Crawford, and I.J. Constable, Aust. N Z J Ophthalmol. 24, 297–303 (1996).

    Google Scholar 

  • C.R. Hicks, G.J. Crawford, D.T. Tan, G.R. Snibson, G.L. Sutton, N. Downie, T.D. Gondhowiardjo, D.S. Lam, L. Werner, D. Apple, and I.J. Constable, Cornea 22, 583–590 (2003).

    Article  Google Scholar 

  • C.R. Hicks, J.H. Fitton, T.V. Chirila, G.J. Crawford, and I.J. Constable, Surv. Ophthalmol. 42, 175–189 (1997a).

    Article  Google Scholar 

  • C.R. Hicks, X. Lou, S. Platten, A.B. Clayton, S. Vijayasekaran, H.J. Fitton, T.V. Chirila, G.J. Crawford, and I.J. Constable, Aust. N Z J Ophthalmol. 25(Suppl 1), S50–2 (1997b).

    Google Scholar 

  • C.R. Hicks, S. Vijayasekaran, T.V. Chirila, S.T. Platten, G.J. Crawford, and I.J. Constable, Cornea 17, 301–308 (1998).

    Article  Google Scholar 

  • K. Hille, H. Landau, and K.W. Ruprecht, Ophthalmologe 99, 90–95 (2002).

    Article  Google Scholar 

  • D.A. Hoeltzel, D. Altman, K. Buzard, and K. Choe, J. Biomechan. Engin. 114, 202–215 (1992).

    Google Scholar 

  • M.M. Ismail, J. Cataract Refract. Surg. 28, 527–530 (2002).

    Article  Google Scholar 

  • B. Khan, E.J. Dudenhoefer, and C.H. Dohlman, Curr. Opin. Ophthalmol. 12, 282–287 (2001).

    Article  Google Scholar 

  • F. Li, D. Carlsson, C. Lohmann, E. Suuronen, S. Vascotto, K. Kobuch, H. Sheardown, R. Munger, M. Nakamura, and M. Griffith, Proc. Natl. Acad. Sci. USA 100, 15346–15351 (2003).

    Article  Google Scholar 

  • V.A. Liu and S.N. Bhatia, Biomed. Microdev. 4, 257–266 (2002).

    Article  Google Scholar 

  • X. Lou and V. Coppenhagen., Polym. Intern. 50, 319–325 (2001).

    Article  Google Scholar 

  • T. Matsuda, K. Inoue, and T. Sugawara, ASAIO Transactions 36, M559–M562 (1990).

    Google Scholar 

  • T. Matsuda and T. Sugawara, Langmuir 11, 2272–2276 (1995).

    Article  Google Scholar 

  • V. Moser, D.C. Anthony, W.F. Sette, and R.C. MacPhail, Fund. Appl. Toxicol. 18, 343–352 (1992).

    Article  Google Scholar 

  • D. Myung, W. Koh, J. Ko, J. Noolandi, M. Carrasco, A. Smith, C. Frank, and C. Ta, Invest. Ophthalmol. Vis. Sci. 46: E-Abstract 5003, (2005).

  • Y. Nakayama and T. Matsuda, Langmuir 15, 5560–5566 (1999).

    Article  Google Scholar 

  • I.S. Nash, P.R. Greene, and C.S. Foster, Exp. Eye. Res. 35, 413–424 (1982).

    Article  Google Scholar 

  • K.T. Nguyen and J.L. West, Biomaterials 23, 4307–4314 (2002).

    Article  Google Scholar 

  • M. Nouri, H. Terada, E.C. Alfonso, C.S. Foster, M.L. Durand, and C.H. Dohlman, Arch. Ophthalmol. 119, 484–489 (2001).

    Google Scholar 

  • O. Olabisi, L.M. Robeson, and M.T. Shaw, Polymer-Polymer Miscibility (Academic Press, New York, 1979).

    Google Scholar 

  • N.C. Padmavathi and P.R. Chatterji, Macromolecules 29, 1976–1979 (1996).

    Article  Google Scholar 

  • S. Pintucci, F. Pintucci, S. Caiazza, and M. Cecconi, Eur. J. Ophthalmol. 6, 125–130 (1996).

    Google Scholar 

  • C.P. Quinn, C.P. Pathak, A. Heller, and J.A. Hubbell, Biomaterials 16, 389–396 (1995).

    Article  Google Scholar 

  • H. Saito, A. Sakurai, M. Sakakibara, and H. Saga, J. Appl. Polym. Sci. 90, 3020–3025 (2003).

    Article  Google Scholar 

  • B. Strampelli, Ber. Zusammenkunft. Dtsch. Ophthalmol. Ges. 71, 322–335 (1972).

    Google Scholar 

  • D.F. Sweeney, R.Z. Xie, M.D. Evans, A. Vannas, S.D. Tout, H.J. Griesser, G. Johnson, and J.G. Steele, Invest. Ophthalmol. Vis. Sci. 44, 3301–3309 (2003).

    Article  Google Scholar 

  • V. Trinkaus-Randall, J. Capecchi, L. Sammon, D. Gibbons, H.M. Leibowitz, and C. Franzblau, Invest. Ophthalmol. Vis. Sci. 31, 1321–1326 (1990a).

    Google Scholar 

  • V. Trinkaus-Randall, A.W. Newton, and C. Franzblau, Invest. Ophthalmol. Vis. Sci. 31, 440–447 (1990b).

    Google Scholar 

  • V.L. Tsang, and S.N. Bhatia, Adv. Drug. Deliv. Rev. 56, 1635–1647 (2004).

    Article  Google Scholar 

  • A.G. Tsuk, V. Trinkaus-Randall, and H.M. Leibowitz, J. Biomed. Mater. Res. 34, 299–304 (1997).

    Article  Google Scholar 

  • S. Vijayasekaran, T.V. Chirila, T.A. Robertson, X. Lou, J.H. Fitton, C.R. Hicks, and I.J. Constable, J. Biomater. Sci. Polym. Ed. 11, 599–615 (2000).

    Article  Google Scholar 

  • A. Wittemann, B. Haupt, and M. Ballauff, Phys. Chem. Chem. Phys. 5, 1671–1677 (2003).

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Bio-X Program and the Office of Technology Licensing at Stanford University. Instrument support was provided by the shared facilities at the Center on Polymer Interfaces and Macromolecular Assemblies (CPIMA) at Stanford University. The authors thank Stacey Bent and Jungsic Hong for use of the X-ray spectrometer and Beinn Muir for use of his high-resolution digital camera. Additional external support was also received from VISX, Incorporated (now VISX Technology) and the Fight for Sight Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher N. Ta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Myung, D., Koh, W., Bakri, A. et al. Design and fabrication of an artificial cornea based on a photolithographically patterned hydrogel construct. Biomed Microdevices 9, 911–922 (2007). https://doi.org/10.1007/s10544-006-9040-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-006-9040-4

Keywords

Navigation