Skip to main content
Log in

Efficient estimation of regularization parameters via downsampling and the singular value expansion

Downsampling regularization parameter estimation

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

The solution, \(\varvec{x}\), of the linear system of equations \(A\varvec{x}\approx \varvec{b}\) arising from the discretization of an ill-posed integral equation \(g(s)=\int H(s,t) f(t) \,dt\) with a square integrable kernel H(st) is considered. The Tikhonov regularized solution \(\varvec{x}(\lambda )\) approximating the Galerkin coefficients of f(t) is found as the minimizer of \(J(\varvec{x})=\{ \Vert A \varvec{x} -\varvec{b}\Vert _2^2 + \lambda ^2 \Vert L \varvec{x}\Vert _2^2\}\), where \(\varvec{b}\) is given by the Galerkin coefficients of g(s). \(\varvec{x}(\lambda )\) depends on the regularization parameter \(\lambda \) that trades off between the data fidelity and the smoothing norm determined by L, here assumed to be diagonal and invertible. The Galerkin method provides the relationship between the singular value expansion of the continuous kernel and the singular value decomposition of the discrete system matrix for square integrable kernels. We prove that the kernel maintains square integrability under left and right multiplication by bounded functions and thus the relationship also extends to appropriately weighted kernels. The resulting approximation of the integral equation permits examination of the properties of the regularized solution \(\varvec{x}(\lambda )\) independent of the sample size of the data. We prove that consistently down sampling both the system matrix and the data provides a small scale system that preserves the dominant terms of the right singular subspace of the system and can then be used to estimate the regularization parameter for the original system. When g(s) is directly measured via its Galerkin coefficients the regularization parameter is preserved across resolutions. For measurements of g(s) a scaling argument is required to move across resolutions of the systems when the regularization parameter is found using a regularization parameter estimation technique that depends on the knowledge of the variance in the data. Numerical results illustrate the theory and demonstrate the practicality of the approach for regularization parameter estimation using generalized cross validation, unbiased predictive risk estimation and the discrepancy principle applied to both the system of equations, and to the regularized system of equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. If the kernel integral is calculated exactly over the given interval it is still possible to obtain \({A^{(n)}}\) from \({A^{(N)}}\) by summing the relevant terms from \({A^{(N)}}\) but the scaling factor is the inverse of that in (4.5).

  2. The scaling can also be verified directly for each regularization function MDP, ADP and UPRE.

  3. We show this result to demonstrate that a simple check for the convergence of \((\varDelta ^{(n)})^2\) might be misleading, since it is not always the case that an analytic expression is known for the matrix elements. It is more common that the matrix elements are calculated using numerical quadrature.

References

  1. Aster, R.C., Borchers, B., Thurber, C.H.: Parameter Estimation and Inverse Problems, 2nd edn. Elsevier Inc., Amsterdam (2013)

    MATH  Google Scholar 

  2. Baker, C.T.H.: The Numerical Treatment of Integral Equations. Clarendon Press, Oxford (1977)

    MATH  Google Scholar 

  3. Chung, J.M., Nagy, J., O’Leary, D.P.: A weighted GCV method for Lanczos hybrid regularization. ETNA 28, 149–167 (2008)

    MathSciNet  MATH  Google Scholar 

  4. Chung, J., Easley, G., O’Leary, D.P.: Windowed spectral regularization of inverse problems. SIAM J. Sci. Comput. 6, 3175–3200 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gazzola, S., Novati, P., Russo, M.R.: Embedded techniques for choosing the parameter in Tikhonov regularization. Numer. Linear Algebra Appl. 21(6), 796–812 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Golub, G.H., van Loan, C.: Matrix Computations, 3rd edn. Johns Hopkins Press, Baltimore (1996)

    MATH  Google Scholar 

  7. Golub, G.H., Heath, M., Wahba, G.: Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 21(2), 215–223 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hansen, P.C.: Computation of the singular value expansion. Computing 40, 185–199 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hansen, P.C.: Rank-deficient and discrete ill-posed problems: numerical aspects of linear inversion. In: SIAM Monographs on Mathematical Modeling and Computation, vol. 4, Philadelphia (1998)

  10. Hansen, P.C.: The L-curve and its use in the numerical treatment of inverse problems. In: Johnston, P. (ed.) Invited Chapter in Computational Inverse Problems in Electrocardiology. WIT Press, Southampton, pp. 119–142 (2001)

  11. Hansen, P.C.: Regularization Tools:A Matlab package for analysis and solution of discrete ill-posed problems. Version 4.0 for Matlab 7.3. Numer. Algorit. 46, 189–194. http://www2.imm.dtu.dk/~pcha/Regutools/ (2007)

  12. Hansen, P.C.: Discrete inverse problems: insights and algorithms. In: SIAM Series on Fundamentals of Algorithms, vol. 7, Philadelphia, PA (2013)

  13. Hansen, P.C., Jensen, T.K.: Noise propagation in regularizing iterations for image deblurring. ETNA 31, 204–220 (2008)

    MathSciNet  MATH  Google Scholar 

  14. Hansen, P.C., Nagy, J., O’Leary, D.: Deblurring Images Matrices Spectra and Filtering, Philadelphia PA (2006)

  15. Ples̆inger, M., Hnĕtynková, I., Strakos̆, Z.: The regularizing effect of the Golub–Kahan iterative bidiagonalization and revealing the noise level in the data. BIT Numer. Math. 49(4), 669–696 (2009)

  16. Huang, Q., Renaut, R.A.: Functional partial canonical correlation. Bernoulli. 21(2), 1047–1066 (2014). http://dx.doi.org/10.3150/14-BEJ597

  17. Jensen, T.K., Hansen, P.C.: Iterative regularization with minimum-residual methods. BIT Numer. Math. 47, 103–120 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kirsch, A.: An Introduction to the Mathematical Theory of Inverse Problems. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  19. Kress, R.: Linear Integral Equations. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

  20. Lu, Y., Shen, L., Xu, Y.: Multi-parameter regularization methods for high-resolution image reconstruction with displacement errors. IEEE Trans. Circ. Syst. I 54(8), 1788–1799 (2007)

    Article  MathSciNet  Google Scholar 

  21. McCormick, S.: Multigrid Methods Society for Industrial and Applied Mathematics, Philadelphia, PA (1987). doi:10.1137/1.9781611971057

  22. Mead, J.L.: Discontinuous parameter estimates with least squares estimators. Appl. Math. Comput. 219, 5210–5223 (2013)

    MathSciNet  MATH  Google Scholar 

  23. Mead, J.L., Renaut, R.A.: A Newton root-finding algorithm for estimating the regularization parameter for solving ill-conditioned least squares problems. Inverse Probl. 25, 025002 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Morozov, V.A.: On the solution of functional equations by the method of regularization. Soviet Math. Doklady 7, 414–417 (1966)

    MathSciNet  MATH  Google Scholar 

  25. Paige, C.C., Saunders, M.A.: LSQR: an algorithm for sparse linear equations and sparse least squares. ACM Trans. Math. Softw. 8, 43–71 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  26. Paige, C.C., Saunders, M.A.: ALGORITHM 583 LSQR: sparse linear equations and least squares problems. ACM Trans. Math. Softw. 8, 195–209 (1982)

    Article  Google Scholar 

  27. Reichel, L., Sgallari, F., Ye, Q.: Tikhonov regularization based on generalized Krylov subspace methods. Appl. Numer. Math. 62, 1215–1228 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Renaut, R.A., Hnětynková, I., Mead, J.L.: Regularization parameter for large-scale Tikhonov regularization using a priori information. Comput. Stat. Data Anal. 54, 3430–3445 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Smithies, F.: Integral Equations Cambridge Tract No. 49. Cambridge University Press, Cambridge (1958)

    Google Scholar 

  30. Turchin, V.F.: Solution of Fredholm equations of the first kind in a statistical ensemble of smooth functions. USSR Comput. Math. Math. Phys. 7, 79–101 (1967)

    Article  MathSciNet  Google Scholar 

  31. Vogel, C.R.: Computational methods for inverse problems. In: SIAM Frontiers in Applied Mathematics, Philadelphia, PA (2002)

Download references

Acknowledgements

Rosemary Renaut acknowledges the support of AFOSR Grant 025717: “Development and Analysis of Non-Classical Numerical Approximation Methods”, and NSF Grant DMS 1216559: “Novel Numerical Approximation Techniques for Non-Standard Sampling Regimes”. All authors are appreciative of the many comments of the reviewers which assisted in the improved exposition of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosemary A. Renaut.

Additional information

Communicated by Lothar Reichel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Renaut, R.A., Horst, M., Wang, Y. et al. Efficient estimation of regularization parameters via downsampling and the singular value expansion. Bit Numer Math 57, 499–529 (2017). https://doi.org/10.1007/s10543-016-0637-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-016-0637-6

Keywords

Mathematics Subject Classification

Navigation