Skip to main content
Log in

Superconvergent Nyström method for Urysohn integral equations

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

Integral equations occur naturally in many fields of mechanics and mathematical physics. In this paper a superconvergent Nyström method has been used for solving one of the most important cases in nonlinear integral equations which is called Urysohn form. Using an interpolatory projection at the set of r Gauss points, it is shown that the proposed method has an order of 3r and one step of iteration improve the convergence order to 4r. The size of the nonlinear system of equations that must be solved to calculate the approximate solution using this method remains the same as the range of the interpolatory projection. Numerical results are given to illustrate the improvement of the order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agarwal, R.P., O’Regan, D., Wong, P.J.Y.: Positive Solutions of Differential, Difference and Integral Equations. Kluwer Academic, Dordrecht (1999)

    Book  MATH  Google Scholar 

  2. Allouch, C., Sablonnière, P., Sbibih, D., Tahrichi, M.: Superconvergent Nyström and degenerate kernel methods for the numerical solution of integral equations of the second kind. J. Integral Equ. Appl. 24, 463–485 (2012)

    Article  MATH  Google Scholar 

  3. Allouch, C., Sbibih, D., Tahrichi, M.: Superconvergent Nyström and degenerate kernel methods for Hammerstein integral equations. J. Comput. Appl. Math. 258, 30–41 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Atkinson, K.E.: A survey of numerical methods for solving nonlinear integral equations. J. Int. Equ. Appl. 4, 15–46 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Atkinson, K.E.: The numerical evaluation of fixed points for completely continuous operators. SIAM J. Num. Anal. 10, 799–807 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  6. Atkinson, K.E.: The numerical solution of integral equations of the second kind. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  7. Atkinson, K.E., Flores, J.: The discrete collocation method for nonlinear integral equations, Report on Computational Mathematics, No. 10, The University of Iowa, Iowa (1991)

  8. Atkinson, K.E., Graham, I., Sloan, I.: Piecewise continuous collocation for integral equation. SIAM J. Numer. Anal 20, 172–186 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  9. Atkinson, K.E., Potra, F.: Projection and iterated projection methods for nonlinear integral equations. SIAM J. Numer. Anal. 24, 1352–1373 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  10. de Boor, C., Swartz, B.: Collocation at Gaussian points. SIAM J. Numer. Anal. 10, 582–606 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  11. Brunner, H.: On implicitly linear and iterated collocation methods for Hammerstein integral equations. J. Int. Equ. Appl. 3, 475–488 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  12. Burton, T.A.: Volterra Integral and Differential Equations. Academic Press, New York (1983)

    MATH  Google Scholar 

  13. Chatelin, F., Lebbar, R.: Superconvergence results for the iterated projection method applied to a Fredholm integral equation of the second kind and the corresponding eigenvalue problem. J. Integral Equ. Appl. 6, 71–91 (1984)

    MathSciNet  MATH  Google Scholar 

  14. Grammont, L., Kulkarni, R.P., Vasconcelos, P.B.: Modified projection and the iterated modified projection methods for nonlinear integral equations. J. Integral Equ. Appl. 25(4), 481–516 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Han, G.Q.: Asymptotic error expansion for the Nystrm method for nonlinear Fredholm integral equations of the second kind. BIT Numer. Math. 34(2), 254–261 (1994)

    Article  MATH  Google Scholar 

  16. Kumar, S.: A discrete collocation-type method for Hammerstein equation. SIAM J. Numer. Anal. 25, 328–341 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kumar, S.: Superconvergence of a collocation-type method for Hammerstein equations. IMA J. Numer. Anal. 7, 313–325 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kumar, S., Sloan, I.H.: A new collocation-type method for Hammerstein equations. Math. Comput. 178(48), 585–593 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  19. Krasnoselskii, M.A.: Topological methods in the theory of nonlinear integral equations. Pergamon Press, London (1964)

    Google Scholar 

  20. Krasnoselskii, M.A., Vainikko, G.A., Zabreiko, P.P., et al.: Approximate solution of operator equations. P. Noordhoff, Groningen (1972)

  21. Krasnoselskii, M.A., Zabreiko, P.P.: Geometrical methods of nonlinear analysis. Springer-Verlag, Berlin (1984)

    Book  Google Scholar 

  22. Lardy, L.J.: A variation of Nyström’s method for Hammerstein equations. J. Integral Equ. Appl. 3, 43–60 (1981)

    MathSciNet  MATH  Google Scholar 

  23. O’Regan, D., Meehan, M.: Existence theory for nonlinear integral and integro-differential equations. Kluwer Academic, Dordrecht (1998)

    Book  MATH  Google Scholar 

  24. Potra, F.A., Pták, V.: Nondiscrete induction and iterative processes. Pitman Advanced Publishing Program, Boston etc. (1984)

    MATH  Google Scholar 

  25. Grammont, L.: A Galerkin’s perturbation type method to approximate a fixed point of a compact operator. Int. J. Pure Appl. Math. 69, 1–14 (2011)

    MathSciNet  MATH  Google Scholar 

  26. Sloan, I.: Improvement by iteration for compact operator equations. Math. Comput. 30, 758–764 (1976)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We wish to express our great gratitude to the referees for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Driss Sbibih.

Additional information

Communicated by Tom Lyche.

Research supported by URAC-05.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allouch, C., Sbibih, D. & Tahrichi, M. Superconvergent Nyström method for Urysohn integral equations. Bit Numer Math 57, 3–20 (2017). https://doi.org/10.1007/s10543-016-0629-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-016-0629-6

Keywords

Mathematics Subject Classification

Navigation