Skip to main content
Log in

Analysis of a new dimension-wise splitting iteration with selective relaxation for saddle point problems

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

We propose a new dimension-wise splitting with selective relaxation (DSSR) method for saddle point systems arising from the discretization of the incompressible Navier–Stokes equations. Using Fourier analysis, we determine the optimal choice of the relaxation parameter that leads to the best performance of the iterative method for the Stokes and the steady Oseen equations. We also explore numerically the influence of boundary conditions on the optimal choice of the parameter, the use of inner and outer iterations, and the performance for a lid driven cavity flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. 2.0439 is a root of the polynomial \(12x^4-36x^3+11x^2+23x+5\).

  2. We thank an anonymous referee for pointing out that in the Stokes case, \(\nu \) could actually be scaled out of the problem.

References

  1. Bai, Z.-Z.: Optimal parameters in the HSS-like methods for saddle-point problems. Numer. Linear Algebra Appl. 16(6), 447–479 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bai, Z.-Z., Golub, G.H.: Accelerated Hermitian and skew-Hermitian splitting iteration methods for saddle-point problems. IMA J. Numer. Anal. 27(1), 1–23 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bai, Z.-Z., Golub, G.H., Li, C.-K.: Optimal parameter in Hermitian and skew-Hermitian splitting method for certain two-by-two block matrices. SIAM J. Sci. Comput. 28(2), 583–603 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bai, Z.-Z., Golub, G.H., Li, C.-K.: Convergence properties of preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite matrices. Math. Comp. 76(257), 287–298 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bai, Z.-Z., Golub, G.H., Ng, M.K.: Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems. SIAM J. Matrix Anal. Appl. 24(3), 603–626 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bai, Z.-Z., Golub, G.H., Pan, J.-Y.: Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems. Numer. Math. 98(1), 1–32 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bennequin, D., Gander, M.J., Halpern, L.: A homographic best approximation problem with application to optimized Schwarz waveform relaxation. Math. Comp. 78(265), 185–223 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bennequin, D., Gander, M.J., Gouarin, L., Halpern, L.: Optimized Schwarz waveform relaxation for advection reaction diffusion equations in two dimensions. Numer. Math. (2016) (to appear)

  9. Benzi, M., Gander, M.J., Golub, G.H.: Optimization of the Hermitian and skew-Hermitian splitting iteration for saddle-point problems. BIT 43(5), 881–900 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta Numer. 14(1), 1–137 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Benzi, M., Guo, X.-P.: A dimensional split preconditioner for Stokes and linearized Navier–Stokes equations. Appl. Numer. Math. 61(1), 66–76 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Benzi, M., Ng, M.K., Niu, Q., Wang, Z.: A relaxed dimensional factorization preconditioner for the incompressible Navier–Stokes equations. J. Comput. Phys. 230(16), 6185–6202 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Brown, P.N., Walker, H.F.: GMRES on (nearly) singular systems. SIAM J. Matrix Anal. Appl. 18(1), 37–51 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cao, Y., Du, J., Niu, Q.: Shift-splitting preconditioners for saddle point problems. J. Comput. Appl. Math. 272, 239–250 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Elman, H.C., Howle, V.E., Shadid, J., Shuttleworth, R., Tuminaro, R.S.: Block preconditioners based on approximate commutators. SIAM J. Sci. Comput. 27(5), 1651–1668 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Elman, H.C., Howle, V.E., Shadid, J., Silvester, D.J., Tuminaro, R.S.: Least squares preconditioners for stabilized discretizations of the Navier–Stokes equations. SIAM J. Sci. Comput. 30(1), 290–311 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Elman, H.C., Tuminaro, R.S.: Boundary conditions in approximate commutator preconditioners for the Navier–Stokes equations. Electron. Trans. Numer. Anal. 35, 257–280 (2009)

    MathSciNet  MATH  Google Scholar 

  18. Gander, M.J.: Optimized Schwarz methods. SIAM J. Numer. Anal. 44(2), 699–731 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gander, M.J.: Schwarz methods over the course of time. ETNA 31, 228–255 (2008)

    MathSciNet  MATH  Google Scholar 

  20. Gander, M.J., Halpern, L.: Optimized Schwarz waveform relaxation for advection reaction diffusion problems. SIAM J. Numer. Anal. 45(2), 666–697 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gander, M.J., Xu, Y.: Optimized Schwarz methods for circular domain decompositions with overlap. SIAM J. Numer. Anal. 52(4), 1981–2004 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gander, M.J., Xu, Y.: Optimized Schwarz methods with nonoverlapping circular domain decomposition. Math. Comp. (2016) (to appear 2016)

  23. Harlow, F.H., Welch, J.E.: Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8(12), 2182–2189 (1965)

    Article  MATH  Google Scholar 

  24. Lebedev, V.I.: Difference analogues of orthogonal decompositions, basic differential operators and some boundary problems of mathematical physics. I. USSR Comput. Math. Math. Phys. 4(3), 69–92 (1964)

    Article  MATH  Google Scholar 

  25. Reichel, L., Ye, Q.: Breakdown-free GMRES for singular systems. SIAM J. Matrix Anal. Appl. 26(4), 1001–1021 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Saad, Y.: Iterative Methods for Sparse Linear Systems, SIAM (2003)

  27. Welch, J.E., Harlow, F.H., Shannon, J.P., Daly, B.J.: The MAC method-a computing technique for solving viscous, incompressible, transient fluid-flow problems involving free surfaces. Tech. Rep., Los Alamos Scientific Laboratory, University of California, New Mexico (1965)

Download references

Acknowledgments

The authors would like to thank the organizing committee for the wonderful conference NASC2014, where the authors met each other and started their collaboration on this interesting topic. They are also very thankful for the constructive comments of the anonymous referees, which substantially enhanced the content and structure of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingxiang Xu.

Additional information

Q. Niu: Partially supported by NSFC-11301420.

Y. Xu: Partially supported by NSFC-11201061, 11471047, 11271065, CPSF-2012M520657 and the Science and Technology Development Planning of Jilin Province 20140520058JH.

Appendix: Optimizing \(\theta \) in DSSR for the Stokes problem

Appendix: Optimizing \(\theta \) in DSSR for the Stokes problem

In this appendix we show that \(\theta =1/2\) is the best parameter value for DSSR when applied to the 2D Stokes problem. Using Fourier analysis as in Sect. 3.1 for the Stokes equation (3.1) with

$$\begin{aligned} \hat{E}_1=\mathtt{diag}(0,1,\theta ),\quad \hat{E}_2=\mathtt{diag}(1,0,1-\theta ), \end{aligned}$$

one can compute the eigenvalues of the iteration matrix \(M_{\alpha }\), and we get \(\lambda _{1,2}(k_1,k_2)=0\) and

$$\begin{aligned} \lambda _3(k_1,k_2,\theta )=\frac{(\alpha \nu \theta (k_1^2+k_2^2)-k_2^2)(\alpha \nu (1-\theta )(k_1^2+k_2^2)-k_1^2)}{(\alpha \nu \theta (k_1^2+k_2^2)+k_1^2)(\alpha \nu (1-\theta )(k_1^2+k_2^2)+k_2^2)}. \end{aligned}$$

We then find

$$\begin{aligned} \lim _{k_2\rightarrow 0}|\lambda _3(k_1,k_2,\theta )|=\left| \frac{\alpha \nu (\theta -1)\theta -\theta +1}{\alpha \nu (\theta -1)\theta -\theta }\right| =:\rho _{10}(\alpha ,\nu ,\theta ), \end{aligned}$$
$$\begin{aligned} \lim _{k_2\rightarrow 0}|\lambda _3(k_1,k_2,\theta )|=\left| \frac{\alpha \nu (\theta -1)\theta +\theta }{\alpha \nu (\theta -1)\theta +\theta -1}\right| =:\rho _{20}(\alpha ,\nu ,\theta ). \end{aligned}$$

It is easy to verify that \(\rho _{10}\) decreases monotonically in \(\theta \), \(\rho _{20}\) increases monotonically in \(\theta \) for \(\theta \in (0,1)\) and \(\theta =1/2\) solves \(\rho _{10}=\rho _{20}\). Thus, if \(\theta \ne 1/2\) we would find a spectral radius of \(\hat{M}_\alpha \) with \(\max _{k_1,k_2}\rho (k_1,k_2,\nu ,\alpha )\ge \max \{\rho _{10},\rho _{20}\}>\rho _{10}(\alpha ,\nu ,\frac{1}{2})\), which shows that \(\theta =1/2\) is the best value for the relaxation parameter \(\theta \) introduced in Sect. 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gander, M.J., Niu, Q. & Xu, Y. Analysis of a new dimension-wise splitting iteration with selective relaxation for saddle point problems. Bit Numer Math 56, 441–465 (2016). https://doi.org/10.1007/s10543-016-0606-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-016-0606-0

Keywords

Mathematics Subject Classification

Navigation