Skip to main content
Log in

Inheritance of the discrete Picard condition in Krylov subspace methods

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

When projection methods are employed to regularize linear discrete ill-posed problems, one implicitly assumes that the discrete Picard condition (DPC) is somehow inherited by the projected problems. In this paper we show that, under some assumptions, the DPC holds for the projected uncorrupted systems computed by various Krylov subspace methods. By exploiting the inheritance of the DPC, some estimates on the behavior of the projected problems are also derived. Numerical examples are provided in order to illustrate the accuracy of the derived estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Berisha, S., Nagy, J.G.: Iterative image restoration. In: Chellappa, R., Theodoridis S. (eds.) Academic Press Library in Signal Processing, vol. 4, chap. 7, pp. 193–243. Elsevier, London (2014)

  2. Bunch, J.R., Nielsen, C.P.: Upadating the singular value decomposition. Numer. Math. 31, 111–129 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  3. Calvetti, D., Lewis, B., Reichel, L.: On the regularizing properties of the GMRES method. Numer. Math. 91, 605–625 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Calvetti, D., Morigi, S., Reichel, L., Sgallari, F.: Tikhonov regularization and the L-curve for large discrete ill-posed problems. J. Comput. Appl. Math. 123, 423–446 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer Academic Publishers, Dordrecht (2000)

    MATH  Google Scholar 

  6. Gazzola, S., Novati, P., Russo, M.R.: Embedded techniques for choosing the parameter in Tikhonov regularization. Numer. Linear Algebra Appl. 21(6), 796–812 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gazzola, S., Novati, P., Russo, M.R.: On Krylov projection methods and Tikhonov regularization. Electron. Trans. Numer. Anal. 44, 83–123 (2015)

    MathSciNet  MATH  Google Scholar 

  8. Golub, G.H., Kahan, W.: Calculating the singular values and pseudo-inverse of a matrix. SIAM J. Numer. Anal. 2, 205–224 (1965)

    MathSciNet  MATH  Google Scholar 

  9. Golub, G.H., Loan, C.F.V.: Matrix Computations, 3rd edn. The Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  10. Hanke, M.: Conjugate Gradient Type Methods for Ill-Posed Problems. Longman, Essex (1995)

    MATH  Google Scholar 

  11. Hanke, M., Hansen, P.C.: Regularization methods for large-scale problems. Surv. Math. Ind. 3, 253–315 (1993)

    MathSciNet  MATH  Google Scholar 

  12. Hansen, P.C.: Computation of the singular value expansion. Computing 40(3), 185–199 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hansen, P.C.: The discrete Picard condition for discrete ill-posed problems. BIT 30, 658–672 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hansen, P.C.: Rank-Deficient and Discrete Ill-Posed Problems. SIAM, Philadelphia (1998)

    Book  Google Scholar 

  15. Hansen, P.C.: Regularization tools version 3.0 for Matlab 5.2. Numer. Algorithms 20, 195–196 (1999)

    Article  Google Scholar 

  16. Hansen, P.C., Nagy, J.G., O’Leary, D.P.: Deblurring Images: Matrices, Spectra and Filtering. SIAM, Philadelphia (2006)

    Book  MATH  Google Scholar 

  17. Hansen, P.C.: Regularization tools version 4.0 for Matlab 7.3. Numer. Algorithms 46, 189–194 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hnetynkova, I., Plesinger, M., Strakos, Z.: The regularizing effect of the Golub–Kahan iterative bidiagonalization and revealing the noise level in the data. BIT 49, 669–696 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jensen, T.K., Hansen, P.C.: Iterative regularization with minimum-residual methods. BIT 47, 103–120 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kilmer, M.E., O’Leary, D.: Choosing regularization parameters in iterative methods for ill-posed problems. SIAM J. Matrix Anal. Appl. 22(4), 1204–1221 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nagy, J.G., Palmer, K.M., Perrone, L.: Iterative methods for image deblurring: a Matlab object oriented approach. Numer. Algorithms 36, 73–93 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Novati, P., Russo, M.R.: A GCV based Arnoldi–Tikhonov regularization method. BIT 54(2), 501–521 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. O’Leary, D.P., Simmons, J.A.: A bidiagonalization-regularization procedure for large scale discretizations of ill-posed problems. SIAM J. Sci. Stat. Comput. 2(4), 474–489 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  24. Paige, C.C., Saunders, M.A.: Algorithm 583 LSQR: sparse linear equations and sparse least squares. ACM Trans. Math. Softw. 8, 195–209 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  25. Paige, C.C., Saunders, M.A.: LSQR: an algorithm for sparse linear equations and and sparse least squares. ACM Trans. Math. Softw. 8, 43–71 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  26. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia (2003)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

We are grateful to the anonymous Referee and to the Editor for providing insightful suggestions that helped to expand and improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Gazzola.

Additional information

Communicated by Michiel Hochstenbach.

This work was partially supported by MIUR (Project PRIN 2012 N. 2012MTE38N), and by the University of Padova (Project CPDA124755 “Multivariate approximation with applications to image reconstruction”).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gazzola, S., Novati, P. Inheritance of the discrete Picard condition in Krylov subspace methods. Bit Numer Math 56, 893–918 (2016). https://doi.org/10.1007/s10543-015-0578-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-015-0578-5

Keywords

Mathematics Subject Classification

Navigation