Skip to main content
Log in

Local discontinuous Galerkin methods for fractional ordinary differential equations

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

This paper discusses the upwinded local discontinuous Galerkin methods for the one-term/multi-term fractional ordinary differential equations (FODEs). The natural upwind choice of the numerical fluxes for the initial value problem for FODEs ensures stability of the methods. The solution can be computed element by element with optimal order of convergence \(k+1\) in the \(L^2\) norm and superconvergence of order \(k+1+\min \{k,\alpha \}\) at the downwind point of each element. Here \(k\) is the degree of the approximation polynomial used in an element and \(\alpha \) (\(\alpha \in (0,1]\)) represents the order of the one-term FODEs. A generalization of this includes problems with classic \(m\)’th-term FODEs, yielding superconvergence order at downwind point as \(k+1+\min \{k,\max \{\alpha ,m\}\}\). The underlying mechanism of the superconvergence is discussed and the analysis confirmed through examples, including a discussion of how to use the scheme as an efficient way to evaluate the generalized Mittag-Leffler function and solutions to more generalized FODE’s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Adjerid, S., Devine, K.D., Flaherty, J.E., Krivodonova, L.: A posteriori error estimation for discontinuous Galerkin solutions of hyperbolic problems. Comput. Methods Appl. Mech. Eng. 191, 1097–1112 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations. J. Comput. Phys. 131, 267–279 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brunner, H., Schötzau, D.: Hp-Discontinuous Galerkin time-stepping for Volterra integrodifferential equations. SIAM J. Numer. Anal. 44, 224–245 (2006)

  4. Butzer, P.L., Westphal, U.: An introduction to fractional calculus. World Scientific, Singapore (2000)

    Book  MATH  Google Scholar 

  5. Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Delfour, M., Hager, W., Trochu, F.: Discontinuous Galerkin methods for ordinary differential equations. Math. Comput. 36, 455–473 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  7. Deng, W.H.: Numerical algorithm for the time fractional Fokker-Planck equation. J. Comput. Phys. 227, 1510–1522 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Deng, W.H., Hesthaven, J.S.: Discontinuous Galerkin methods for fractional diffusion equations. ESAIM M2AN 47, 1845–1864 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Diethelm, K., Ford, N.J., Freed, A.D.: A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29, 3–22 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ervin, V.J., Roop, J.P.: Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods Partial Differ. Equ. 22, 558–576 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Guo, B.Q., Heuer, N.: The optimal convergence of the h-p version of the boundary element method with quasiuniform meshes for elliptic problems on polygonal domains. Adv. Comput. Math. 24, 353–374 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hartley, T.T., Lorenzo, C.F., Qammer, H.K.: Chaos in a fractional order Chua’s system. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 42, 485–490 (1995)

    Article  Google Scholar 

  13. Hesthaven, J.S., Warburton, T.: Nodal discontinuous Galerkin methods: algorithms, analysis, and applications. Springer, New York (2008)

    Book  MATH  Google Scholar 

  14. Mainardi, F.: On some properties of the Mittag-Leffler function \(E_\alpha (-t^\alpha )\), completely monotone for \(t>0\) with \(0< \alpha <1\). Discret. Contin. Dyn. Syst. Ser. B (2014) (in press)

  15. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mustapha, K., Brunner, H., Mustapha, H., Schötzau, D.: An hp-version discontinuous Galerkin method for integro-differential equations of parabolic type. SIAM J. Numer. Anal. 49, 1369–1396 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mustapha, K.A.: A Superconvergent discontinuous Galerkin method for Volterra integro-differential equations. Math. Comput. 82, 1987–2005 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Podlubny, I.: Fractional differential equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  19. Schötzau, D., Schwab, C.: An hp a priori error analysis of the DG time-stepping method for initial value problems. Calcolo 37, 207–232 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihua Deng.

Additional information

Communicated by Jan Nordström.

Supported by NSFC 11271173, NSF DMS-1115416, and OSD/AFOSR FA9550-09-1-0613.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, W., Hesthaven, J.S. Local discontinuous Galerkin methods for fractional ordinary differential equations. Bit Numer Math 55, 967–985 (2015). https://doi.org/10.1007/s10543-014-0531-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-014-0531-z

Keywords

Mathematics Subject Classification

Navigation