Skip to main content
Log in

Fourier spectral methods for fractional-in-space reaction-diffusion equations

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

Fractional differential equations are becoming increasingly used as a powerful modelling approach for understanding the many aspects of nonlocality and spatial heterogeneity. However, the numerical approximation of these models is demanding and imposes a number of computational constraints. In this paper, we introduce Fourier spectral methods as an attractive and easy-to-code alternative for the integration of fractional-in-space reaction-diffusion equations described by the fractional Laplacian in bounded rectangular domains of \(\mathbb {R}^n\). The main advantages of the proposed schemes is that they yield a fully diagonal representation of the fractional operator, with increased accuracy and efficiency when compared to low-order counterparts, and a completely straightforward extension to two and three spatial dimensions. Our approach is illustrated by solving several problems of practical interest, including the fractional Allen–Cahn, FitzHugh–Nagumo and Gray–Scott models, together with an analysis of the properties of these systems in terms of the fractional power of the underlying Laplacian operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Adams, E.E., Gelhar, L.W.: Field study of dispersion in a heterogeneous aquifer: 2. Spatial moment analysis. Water Resour. Res. 28, 3293–3307 (1992)

    Article  Google Scholar 

  2. Alexandrescu, A., Bueno-Orovio, A., Salgueiro, J.R., Pérez-García, V.M.: Mapped Chebyshev pseudospectral method to study multiple scale phenomena. Comput. Phys. Commun. 180, 912–919 (2009)

    Article  MATH  Google Scholar 

  3. Allen, S.M., Cahn, J.W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. Mater. 27, 1085–1095 (1979)

    Article  Google Scholar 

  4. Becker-Kern, P., Meerschaert, M.M., Scheffler, H.P.: Limit theorem for continuous time random walks with two time scales. J. App. Prob. 41, 455–466 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Benson, D.A., Wheatcraft, S., Meerschaert, M.M.: Application of a fractional advection-dispersion equation. Water Resour. Res. 36, 1403–1412 (2000)

    Article  Google Scholar 

  6. Briggs, W.L., Henson, V.E.: The DFT: an owner’s manual for the discrete Fourier transform. SIAM, Philadelphia (2000)

    Google Scholar 

  7. Bueno-Orovio, A.: Fourier embedded domain methods: periodic and \({C}^\infty \) extension of a function defined on an irregular region to a rectangle via convolution with Gaussian kernels. App. Math. Comp. 183, 813–818 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bueno-Orovio, A., Cherry, E.M., Fenton, F.H.: Minimal model for human ventricular action potentials in tissue. J. Theor. Biol. 253, 554–560 (2008)

    Article  MathSciNet  Google Scholar 

  9. Bueno-Orovio, A., Pérez-García, V.M.: Spectral smoothed boundary methods: the role of external boundary conditions. Numer. Meth. Part. Differ. Equ. 22, 435–448 (2006)

    Article  MATH  Google Scholar 

  10. Bueno-Orovio, A., Pérez-García, V.M., Fenton, F.H.: Spectral methods for partial differential equations in irregular domains: the spectral smoothed boundary method. SIAM J. Sci. Comput. 28, 886–900 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Burrage, K., Hale, N., Kay, D.: An efficient implicit FEM scheme for fractional-in-space reaction-diffusion equations. SIAM J. Sci. Comput. 34, A2145–A2172 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  12. Engler, H.: On the speed of spread for fractional reaction-diffusion equations. Int. J. Diff. Eqn. 315, 421 (2010)

    Google Scholar 

  13. Feng, W.M., Yu, P., Hu, S.Y., Liu, Z.K., Du, Q., Chen, L.Q.: Spectral implementation of an adaptive moving mesh method for phase-field equations. J. Comput. Phys. 220, 498–510 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membranes. Biophys. J. 1, 445–466 (1961)

    Article  Google Scholar 

  15. Gray, P., Scott, S.K.: Autocatalytic reactions in the isothermal, continuous stirred tank reactor. Isolas and other forms of multistability. Chem. Eng. Sci. 38, 29–43 (1983)

    Article  Google Scholar 

  16. Gray, P., Scott, S.K.: Sustained oscillations and other exotic patterns of behavior in isothermal reactions. J. Phys. Chem. 89, 22–32 (1985)

    Article  Google Scholar 

  17. Hanert, E.: A comparison of three Eulerian numerical methods for fractional-order transport models. Environ. Fluid Mech. 10, 7–20 (2010)

    Google Scholar 

  18. Ilić, M., Liu, F., Turner, I., Anh, V.: Numerical approximation of a fractional-in-space diffusion equation. I. Frac. Calc. App. Anal. 8, 323–341 (2005)

    MATH  Google Scholar 

  19. Ilić, M., Turner, I.W.: Approximating functions of a large sparse positive definite matrix using a spectral splitting method. ANZIAM J. 46, C472–C487 (2005)

    Google Scholar 

  20. Khader, M.M.: On the numerical solutions for the fractional diffusion equation. Commun. Nonlinear Sci. Numer. Simulat. 16, 2535–2542 (2010)

    Article  MathSciNet  Google Scholar 

  21. Khader, M.M., Sweilam, N.H.: Approximate solutions for the fractional advection-dispersion equation using Legendre pseudo-spectral method. Comp. Appl. Math. doi:10.1007/s40314-013-0091-x

  22. Lefèvre, J., Mangin, J.F.: A reaction-diffusion model of human brain development. PLoS Comput. Biol. 6, e1000749 (2010)

    Article  Google Scholar 

  23. Li, X., Xu, C.: A space-time spectral method for the time fractional diffusion equation. SIAM J. Numer. Anal. 47, 2108–2131 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  24. Li, X., Xu, C.: Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation. Commun. Comput. Phys. 8, 1016–1051 (2010)

    MathSciNet  Google Scholar 

  25. Liu, F., Zhuang, P., Anh, V., Turner, I., Burrage, K.: Stability and convergence of the finite difference method for the space-time fractional advection-diffusion equation. App. Math. Comp. 191, 12–20 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  26. Lui, S.H.: Spectral domain embedding for elliptic PDEs in complex domains. J. Comput. Appl. Math. 225, 541–557 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  27. Magin, R.L., Abdullah, O., Baleanu, D., Zhou, X.J.: Anomalous diffusion expressed through fractional order differential operators in the Bloch-Torrey equation. J. Magn. Reson. 190, 255–270 (2008)

    Article  Google Scholar 

  28. Meerschaert, M.M., Benson, D.A., Wheatcraft, S.W.: Subordinated advection-dispersion equation for contaminant transport. Water Resour. Res. 37, 1543–1550 (2001)

    Article  Google Scholar 

  29. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for two-sided space-fractional partial differential equations. App. Num. Math. 56, 80–90 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  30. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  31. Mulholland, L.S., Huang, W.Z., Sloan, D.M.: Pseudospectral solution of near-singular problems using numerical coordinate transformations based on adaptivity. SIAM J. Sci. Comput. 19, 1261–1289 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  32. Nagumo, J., Animoto, S., Yoshizawa, S.: An active pulse transmission line simulating nerve axon. Proc. Inst. Radio Eng. 50, 2061–2070 (1962)

    Google Scholar 

  33. Pang, H.K., Sun, H.W.: Multigrid method for fractional diffusion. J. Comp. Phys. 231, 693–703 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  34. Pearson, J.E.: Complex patterns in a simple system. Science 261, 189–192 (1993)

    Article  Google Scholar 

  35. Roop, J.: Computational aspects of FEM approximations of fractional advection dispersion equations on bounded domains on \({R}^2\). J. Comp. Appl. Math. 193, 243–268 (2005)

    Article  MathSciNet  Google Scholar 

  36. Sabetghadam, F., Sharafatmandjoor, S., Norouzi, F.: Fourier spectral embedded boundary solution of the Poisson’s and Laplace equations with Dirichlet boundary conditions. J. Comput. Phys. 228, 55–74 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  37. Scalas, E., Gorenflo, R., Mainardi, F.: Fractional calculus and continuous time finance. Phys. A 284, 376–384 (2000)

    Article  MathSciNet  Google Scholar 

  38. Trefethen, L.N.: Spectral methods in Matlab. SIAM, Philadelphia (2000)

    Book  MATH  Google Scholar 

  39. Turner, I., Ilić, M., Perr, P.: The use of fractional-in-space diffusion equations for describing microscale diffusion in porous media. In: 11th International Drying Conference, Magdeburg, Germany (2010)

  40. Wang, H., Wang, K.: An \(O(N \log ^2 N)\) alternating-direction finite difference method for two-dimensional fractional diffusion equations. J. Comput. Phys. 230, 7830–7839 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  41. Wang, H., Wang, K., Sircar, T.: A direct \(O(N \log ^2 N)\) finite difference method for fractional diffusion equations. J. Comput. Phys. 229, 8095–8104 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  42. Yang, Q., Liu, F., Turner, I.: Numerical methods for fractional partial differential equations with Riesz space fractional derivatives. App. Num. Mod. 34, 200–218 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  43. Yang, Q., Turner, I., Liu, F., Ilić, M.: Novel numerical methods for solving the time-space fractional diffusion equation in 2D. SIAM J. Sci. Comp. 33, 1159–1180 (2011)

    Article  MATH  Google Scholar 

  44. Zayernouri, M., Karniadakis, G.E.: Fractional spectral collocation method. SIAM J. Sci. Comput. 36, A40–A62 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  45. Zhang, Y., Benson, D.A., Reeves, D.M.: Time and space nonlocalities underlying fractional-derivative models: distinction and literature review of field applications. Adv. Water Res. 32, 561–581 (2009)

    Article  Google Scholar 

  46. Zhou, K., Du, Q.: Mathematical and numerical analysis of linear peridynamic models with nonlocal boundary conditions. SIAM J. Numer. Anal. 48, 1759–1780 (2010)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfonso Bueno-Orovio.

Additional information

Communicated by Mechthild Thalhammer.

This publication is based on work supported by Award No. KUK-C1-013-04, made by King Abdullah University of Science and Technology (KAUST).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bueno-Orovio, A., Kay, D. & Burrage, K. Fourier spectral methods for fractional-in-space reaction-diffusion equations. Bit Numer Math 54, 937–954 (2014). https://doi.org/10.1007/s10543-014-0484-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-014-0484-2

Keywords

Mathematics Subject Classification (2010)

Navigation