Skip to main content
Log in

A general framework for finding energy dissipative/conservative \(H^1\)-Galerkin schemes and their underlying \(H^1\)-weak forms for nonlinear evolution equations

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

A general framework for constructing energy dissipative or conservative Galerkin schemes for time-dependent partial differential equations (PDEs) is presented. The framework embraces a variety of dissipative and conservative PDEs with variational structure. An advantageous feature is that implementation of the resulting scheme requires only P1 elements. The schemes and their underlying \(H^1\)-weak forms are derived from the concept of formal weak form and an \(L^2\)-projection technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Atkinson, K., Han, W.: Theoretical Numerical Analysis: A Functional Analysis Framework, 3rd edn. Springer, Heidelberg (2009)

  2. Camassa, R., Holm, D.D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  3. Camassa, R., Holm, D.D., Hyman, J.M.: A new integrable shallow water equation. Adv. Appl. Mech. 31, 1–33 (1994)

    Article  Google Scholar 

  4. Celledoni, E., Grimm, V., McLachlan, R.I., McLaren, D.I., O’Neale, D., Owren, B., Quispel, G.R.W.: Preserving energy resp. dissipation in numerical PDEs using the “Average Vector Field” method. J. Comput. Phys. 231, 6770–6789 (2012)

    Google Scholar 

  5. Constantin, A., Escher, J.: Global existence and blow-up for a shallow water equation. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 25, 303–328 (1998)

    MathSciNet  Google Scholar 

  6. Constantin, A., Strauss, W.A.: Stability of peakons. Comm. Pure Appl. Math. 53, 603–610 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dahlby, M., Owren, B.: A general framework for deriving integral preserving numerical methods for PDEs. SIAM J. Sci. Comput. 33, 2318–2340 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. Degasperis, A., Procesi, M.: Asymptotic Integrability in Symmetry and Perturbation theory, pp. 23–37. World Scientific, Singapore (1999)

    Google Scholar 

  9. Du, Q., Nicolaides, R.A.: Numerical analysis of a continuum model of phase transition. SIAM J. Numer. Anal. 28, 1310–1322 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  10. Fuchssteiner, B., Fokas, A.S.: Symplectic structures, their Bäcklund transformations and hereditary symmetries. Physica D 4, 47–66 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  11. Furihata, D.: Finite difference schemes for \(\frac{\partial u}{\partial t} = \left( \frac{\partial }{\partial x} \right) ^{\alpha } \frac{\delta {G}}{\delta u}\) that inherit energy conservation or dissipation property. J. Comput. Phys. 156, 181–205 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  12. Furihata, D., Matsuo, T.: Discrete Variational Derivative Method: A Structure-Preserving Numerical Method for Partial Differential Equations. Chapman & Hall/CRC, Boca Raton (2011)

    Google Scholar 

  13. Gonzalez, O.: Time integration and discrete Hamiltonian systems. J. Nonlinear Sci. 6, 449–467 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  14. Itoh, T., Abe, K.: Hamiltonian-conserving discrete canonical equations based on variational difference quotients. J. Comput. Phys. 76, 85–102 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kawahara, T.: Oscillatory solitary waves in dispersive media. J. Phys. Soc. Jpn 33, 260–264 (1972)

    Article  Google Scholar 

  16. Kuramae, H.: An alternating discrete variational derivative method and its applications (in Japanese). Master’s thesis, University of Tokyo (2012)

  17. Matsuo, T.: Dissipative/conservative Galerkin method using discrete partial derivatives for nonlinear evolution equations. J. Comput. Appl. Math. 218, 506–521 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  18. Matsuo, T.: A Hamiltonian-conserving Galerkin scheme for the Camassa–Holm equation. J. Comput. Appl. Math. 234, 1258–1266 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  19. Matsuo, T., Furihata, D.: Dissipative or conservative finite-difference schemes for complex-valued nonlinear partial differential equations. J. Comput. Phys. 171, 425–447 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  20. Matsuo, T., Yamaguchi, H.: An energy-conserving Galerkin scheme for a class of nonlinear dispersive equations. J. Comput. Phys. 228, 4346–4358 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  21. Miyatake, Y., Matsuo, T.: Energy-preserving \({H}^1\)-Galerkin schemes for shallow water wave equations with peakon solutions. Phys. Lett. A 376, 2633–2639 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  22. Miyatake, Y., Yaguchi, T., Matsuo, T.: Numerical integration of the Ostrovsky equation based on its geometric structures. J. Comput. Phys. 231, 4542–4559 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  23. Quispel, G.R.W., McLaren, D.I.: A new class of energy-preserving numerical integration methods. J. Phys. A 41, 045206 (2008)

    Google Scholar 

  24. Swift, J., Hohenberg, P.C.: Hydrodynamic fluctuations at the convective instability. Phys. Rev. A 15, 319–328 (1977)

    Article  Google Scholar 

  25. Wazwaz, A.M.: New solitary wave solutions to the Kuramoto–Sivashinsky and the Kawahara equations. Appl. Math. Comput. 182, 1642–1650 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  26. Yaguchi, T., Matsuo, T., Sugihara, M.: An extension of the discrete variational method to nonuniform grids. J. Comput. Phys. 229, 4382–4423 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  27. Yaguchi, T., Matsuo, T., Sugihara, M.: The discrete variational derivative method based on discrete differential forms. J. Comput. Phys. 231, 3963–3986 (2012)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

We are thankful for various comments by the reviewers. We are also grateful to Takaharu Yaguchi and Norikazu Saito for many useful discussions. This work was partly supported by JSPS KAKENHI Grant Numbers 25287030, 23560063. It was also partly supported by the Aihara Project, the FIRST program from JSPS, initiated by CSTP. The first author is supported by the Research Fellowship of the Japan Society for the Promotion of Science for Young Scientists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuto Miyatake.

Additional information

Communicated by Anne Kværnø.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyatake, Y., Matsuo, T. A general framework for finding energy dissipative/conservative \(H^1\)-Galerkin schemes and their underlying \(H^1\)-weak forms for nonlinear evolution equations. Bit Numer Math 54, 1119–1154 (2014). https://doi.org/10.1007/s10543-014-0483-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-014-0483-3

Keywords

Mathematics Subject Classification (2010)

Navigation