Skip to main content
Log in

Discrete stability of perfectly matched layers for anisotropic wave equations in first and second order formulation

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

Analysis of standard central finite difference discretization of perfectly matched layers for a scalar wave equation violating the geometric stability condition is presented. Both first and second order formulations are considered, and in the continuous setting our layers support temporally growing modes. The analysis shows that the discrete second order layer has much better stability properties than the discrete first order layer. In particular the second order layer exhibits growth only if well resolved growing modes are represented on the grid, while the first order version is unstable at most resolutions. We generalize this instability result to other first order systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abarbanel, S., Quasimov, H., Tsynkov, S.: Long-time performance of un-split PMLs with explicit second order schemes. J. Sci. Comput. 41, 1–12 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Appelö, D., Kreiss, G.: A new absorbing layer for elastic waves. J. Comput. Phys. 215, 642–660 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Appelö, D., Kreiss, G.: Application of a perfectly matched layer to the nonlinear wave equation. Wave Motion 44, 531–548 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Appelö, D., Hagstrom, T., Kreiss, G.: Perfectly matched layer for hyperbolic systems: general formulation, well-posedness and stability. SIAM J. Appl. Math. 67, 1–23 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bécache, E., Fauqueux, S., Joly, P.: Stability of perfectly matched layers, group velocities and anisotropic waves. J. Comput. Phys. 188, 399–433 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bécache, E., Givoli, D., Hagstrom, T.: High order absorbing boundary conditions for anisotropic and convective wave equations. J. Comput. Phys. 229(4), 1099–1129 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bérenger, J.: A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114, 185–200 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chew, W., Weedon, W.: A 3-D perfectly matched medium from modified Maxwell’s equations with stretched coordinates. Microw. Opt. Technol. Lett. 7(13), 599–604 (1994)

    Article  Google Scholar 

  9. Collino, F., Tsogka, C.: Application of the PML absorbing layer model to the linear elasto-dynamic problem in anisotropic heterogeneous media. Geophysics 66, 294–307 (2001)

    Article  Google Scholar 

  10. Duru, K., Kreiss, G.: A well-posed and discretely stable perfectly matched layer for elastic wave equations in second order formulation. Commun. Comput. Phys. 11(5), 1643–1672 (2012)

    MathSciNet  Google Scholar 

  11. Gustafsson, B., Kreiss, H.-O., Oliger, J.: Time Dependent Problems and Difference Methods. Wiley, New York (1995)

    MATH  Google Scholar 

  12. Hagstrom, T.: Perfectly matched layers for hyperbolic systems with applications to the linearized Euler equations. In: Cohen, et al. (eds.) Mathematical and Numerical Aspects of Wave Propagation. Proceedings Waves 2003, pp. 125–129. Springer, Berlin (2003)

    Google Scholar 

  13. Hagstrom, T., Becache, E., Givoli, D., Stein, K.: Complete radiation boundary conditions for convective waves. Commun. Comput. Phys. 11(2), 610–628 (2012)

    MathSciNet  Google Scholar 

  14. Halpern, L., Petit-Bergez, S., Rauch, J.: The analysis of matched layers. Conflu. Math. 3(2), 159–236 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lewis, A.S., Parrilo, P.A., Ramana, M.V.: The Lax conjecture is true. Proc. Am. Math. Soc. 133(9), 2495–2499 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Sjögreen, B., Petersson, N.A.: Perfectly matched layer for Maxwell’s equation in second order formulation. J. Comput. Phys. 209, 19–46 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunilla Kreiss.

Additional information

Communicated by Jan Hesthaven.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kreiss, G., Duru, K. Discrete stability of perfectly matched layers for anisotropic wave equations in first and second order formulation. Bit Numer Math 53, 641–663 (2013). https://doi.org/10.1007/s10543-013-0426-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-013-0426-4

Keywords

Mathematics Subject Classification (2000)

Navigation