Skip to main content
Log in

Superconvergence and a posteriori error estimates for the Stokes eigenvalue problems

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

In this paper we consider the finite element approximation of the Stokes eigenvalue problems based on projection method, and derive some superconvergence results and the related recovery type a posteriori error estimators. The projection method is a postprocessing procedure that constructs a new approximation by using the least squares strategy. The results are based on some regularity assumptions for the Stokes equations, and are applicable to the finite element approximations of the Stokes eigenvalue problems with general quasi-regular partitions. Numerical results are presented to verify the superconvergence results and the efficiency of the recovery type a posteriori error estimators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Babuška, I., Osborn, J.E.: Finite element-Galerkin approximation for the eigenvalues and eigenvectors of selfadjoint problems. Math. Comput. 52, 275–297 (1989)

    MATH  Google Scholar 

  3. Babuška, I., Osborn, J.E.: Eigenvalue Problems, Handbook of Numerical Analysis, vol. II, Finite Element Methods (Part I). North-Holland, Amsterdam (1991)

    Google Scholar 

  4. Becker, R., Rannacher, R.: An optimal control approach to a posteriori error estimation in finite element methods. Acta Numer. 10, 1–102 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Blum, H., Rannacher, R.: Finite element eigenvalue computation on domains with reentrant corners using Richardson extrapolation. J. Comput. Math. 8, 321–332 (1990)

    MathSciNet  MATH  Google Scholar 

  6. Boffi, D.: Finite element approximation of eigenvalue problems. Acta Numer. 19, 1–120 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, W., Lin, Q.: Approximation of an eigenvalue problem associated with the Stokes problem by the stream function-vorticity-pressure method. Appl. Math. 51, 73–88 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, H., Wang, J.: An interior estimate of superconvergence for finite element solutions for second-order elliptic problems on quasi-uniform meshes by local projections. SIAM J. Numer. Anal. 41, 1318–1338 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, H., Jia, S., Xie, H.: Postprocessing and higher order convergence for the mixed finite element approximations of the Stokes eigenvalue problems. Appl. Math. 54, 237–250 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, New York (1978)

    MATH  Google Scholar 

  11. Dai, X., Xu, J., Zhou, A.: Convergence and optimal complexity of adaptive finite element eigenvalue computations. Numer. Math. 110, 313–355 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dörfler, W., Nochetto, R.H.: Small data oscillation implies the saturation assumption. Numer. Math. 91, 1–12 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Durán, R.G., Padra, C., Rodriguez, R.: A posteriori error estimators for the finite element approximations of eigenvalue problems. Math. Models Methods Appl. Sci. 13, 1219–1229 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Giani, S., Graham, I.G.: A convergence adaptive method for elliptic eigenvalue problems. SIAM J. Numer. Anal. 47, 1067–1091 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Girault, V., Raviart, P.: Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms. Springer, Heidelberg (1996)

    Google Scholar 

  16. Heimsund, B.O., Tai, X., Wang, J.: Superconvergence for the gradient of finite element approximations by L 2 projections. SIAM J. Numer. Anal. 40, 1263–1280 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Heuveline, V., Rannacher, R.: A posteriori error control for finite element approximations of elliptic eigenvalue problems. Adv. Comput. Math. 15, 107–138 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hoffmann, W., Schatz, A.H., Wahlbin, L.B., Wittum, G.: Asymptotically exact a posteriori estimators for the pointwise gradient error on each element in irregular meshes. Part 1: a smooth problem and globally quasi-uniform meshes. Math. Comput. 70, 897–909 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Huang, H., Chang, S., Chien, C., Li, Z.: Superconvergence of high order FEMs for eigenvalue problems with periodic boundary conditions. Comput. Methods Appl. Mech. Eng. 198, 2246–2259 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jia, S., Xie, H., Yin, X., Gao, S.: Approximation and eigenvalue extrapolation of Stokes eigenvalue problem by nonconforming finite element methods. Appl. Math. 54, 1–15 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Larson, M.G.: A posteriori and a priori error analysis for finite element approximations of self-adjoint elliptic eigenvalue problems. SIAM J. Numer. Anal. 38, 608–625 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Li, J., Wang, J., Ye, X.: Superconvergence by L 2-projections for stabilized finite element methods for the Stokes equations. Int. J. Numer. Anal. Model. 6, 711–723 (2009)

    MathSciNet  Google Scholar 

  23. Lin, Q., Lin, J.: Finite Element Methods, Accuracy and Improvements. Science Press, Beijing (2006)

    Google Scholar 

  24. Liu, H., Sun, J.: Recovery type a posteriori estimates and superconvergence for nonconforming FEM of eigenvalue problems. Appl. Math. Model. 33, 3488–3497 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu, H., Yan, N.: Enhancing finite element approximation for eigenvalue problems by projection method. Comput. Methods Appl. Mech. Eng. 233–236, 81–91 (2012)

    Article  MathSciNet  Google Scholar 

  26. Lovadina, C., Lyly, M., Stenberg, R.: A posteriori estimates for the Stokes eigenvalue problem. Numer. Methods Partial Differ. Equ. 25, 244–257 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mao, D., Shen, L., Zhou, A.: Adaptive finite element algorithms for eigenvalue problems based on local averaging type a posteriori error estimates. Adv. Comput. Math. 25, 135–160 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mercier, B., Osborn, J., Rappaz, J., Raviart, P.A.: Eigenvalue approximation by mixed and hybrid methods. Math. Comput. 36, 427–453 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  29. Naga, A., Zhang, Z.: A posteriori error estimates based on polynomial preserving recovery. SIAM J. Numer. Anal. 42, 1780–1800 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. Naga, A., Zhang, Z., Zhou, A.: Enhancing eigenvalue approximation by gradient recovery. SIAM J. Sci. Comput. 28, 1289–1300 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. Pan, J.: Global superconvergence for the bilinear-constant scheme for the Stokes problem. SIAM J. Numer. Anal. 34, 2424–2430 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  32. Schatz, A.H., Wahlbin, L.B.: Asymptotically exact a posteriori estimators for the pointwise gradient error on each element in irregular meshes. Part II: the piecewise linear case. Math. Comput. 73, 517–523 (2003)

    Article  MathSciNet  Google Scholar 

  33. Wang, J.: A superconvergence analysis for finite element solutions by the least-squares surface fitting on irregular meshes for smooth problems. J. Math. Study 33, 229–243 (2000)

    MathSciNet  MATH  Google Scholar 

  34. Wang, J., Ye, X.: Superconvergence of finite element approximations for the Stokes problem by projection methods. SIAM J. Numer. Anal. 39, 1001–1013 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wu, H., Zhang, Z.: Can we have superconvergent gradient recovery under adaptive meshes? SIAM J. Numer. Anal. 45, 1701–1722 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wu, H., Zhang, Z.: Enhancing eigenvalue approximation by gradient recovery on adaptive meshes. IMA J. Numer. Anal. 29, 1008–1022 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  37. Xu, J., Zhou, A.: A two-grid discretization scheme for eigenvalue problems. Math. Comput. 70, 17–25 (2001)

    MathSciNet  MATH  Google Scholar 

  38. Xu, J., Zhou, A.: Local and parallel finite element algorithms for eigenvalue problems. Acta Math. Appl. Sin. 18, 185–200 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  39. Yang, Y.: An Analysis of the Finite Element Method for Eigenvalue Problems. Guizhou Press, Guiyang (2004)

    Google Scholar 

  40. Yang, Y.: A posteriori error analysis of conforming/nonconforming finite elements. Sci. Sin. Math. 40, 843–862 (2010)

    Google Scholar 

  41. Ye, X.: Superconvergence of nonconforming finite element method for the Stokes equations. Numer. Methods Partial Differ. Equ. 18, 143–154 (2002)

    Article  MATH  Google Scholar 

  42. Zhang, Z., Naga, A.: A new finite element gradient recovery method: superconvergence property. SIAM J. Sci. Comput. 26, 1192–1213 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  43. Zienkiewicz, O.C., Zhu, J.Z.: The superconvergence patch recovery (SPR) and adaptive finite element refinement. Comput. Methods Appl. Mech. Eng. 101, 207–224 (1992)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China under the Grants 11001027, 11171337, 91130021 and 11201464, and the National Basic Research Program under the Grants 2011CB309705, 2010CB731505 and 2012CB821204.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huipo Liu.

Additional information

Communicated by Rolf Stenberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, H., Gong, W., Wang, S. et al. Superconvergence and a posteriori error estimates for the Stokes eigenvalue problems. Bit Numer Math 53, 665–687 (2013). https://doi.org/10.1007/s10543-013-0422-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-013-0422-8

Keywords

Mathematics Subject Classification (2010)

Navigation