Skip to main content

Advertisement

Log in

Stable finite difference schemes for the magnetic induction equation with Hall effect

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

We consider a sub-model of the Hall-MHD equations: the so-called magnetic induction equations with Hall effect. These equations are non-linear and include third-order spatial and spatio-temporal mixed derivatives. We show that the energy of the solutions is bounded and design finite difference schemes that preserve the energy bounds for the continuous problem. We design both divergence preserving schemes and schemes with bounded divergence. We present a set of numerical experiments that demonstrate the robustness of the proposed schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Biskamp, D.: Nonlinear Magnetohydrodynamics. Cambridge University Press, New York (1993)

    Book  Google Scholar 

  2. Carpenter, M.H., Nordström, J., Gottlieb, D.: A stable and conservative interface treatment of arbitrary spatial accuracy. J. Comput. Phys. 148, 341–365 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Fuchs, F.G., Karlsen, K., Mishra, S., Risebro, N.H.: Stable upwind schemes for the magnetic induction equation. Math. Model. Numer. Anal. 43(5), 825–852 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Fuchs, F.G., McMurry, A.D., Mishra, S., Risebro, N.H., Waagan, K.: Simulating waves in the upper solar atmosphere with SURYA: a well-balanced high-order finite volume code. Astrophys. J. 732(2), 75 (2011)

    Article  MathSciNet  Google Scholar 

  5. Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretisation method. SIAM Rev. 43, 89–112 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gurnett, D.A., Bhattacharjee, A.: Introduction to Plasma Physics. Cambridge University Press, New York (2005)

    Google Scholar 

  7. Hiptmair, R.: Multi-grid method for Maxwell’s equations. SIAM J. Numer. Anal. 36(1), 204–225 (1999)

    Article  MathSciNet  Google Scholar 

  8. Koley, U., Mishra, S., Risebro, N.H., Svärd, M.: Higher order finite difference schemes for the magnetic induction equations. BIT Numer. Math. 49(2), 375–395 (2009)

    Article  MATH  Google Scholar 

  9. Koley, U., Mishra, S., Risebro, N.H., Svärd, M.: Higher order finite difference schemes for the magnetic induction equations with resistivity. IMA J. Numer. Anal. (2011). doi:10.1093/imanum/drg030

    Google Scholar 

  10. Kreiss, H.-O., Scherer, G.: Finite element and finite difference methods for hyperbolic partial differential equations. In: deBoor, C. (ed.) Mathematical Aspects of Finite Elements in Partial Differential Equations, pp. 195–212. Academic Press, New York (1974)

    Google Scholar 

  11. Ma, Z.W., Bhattacharjee, A.: Hall magnetohydrodynamic reconnection: the geospace environment challenge. J. Geophys. Res. 106, 3773–3782 (2001)

    Article  Google Scholar 

  12. Mattsson, K., Nordström, J.: Summation by parts operators for finite difference approximations of second derivatives. J. Comput. Phys. 199, 2 (2004)

    Article  Google Scholar 

  13. Mishra, S., Svärd, M.: On stability of numerical scheme via frozen coefficients and magnetic induction equations. BIT Numer. Math. 50(1), 85–108 (2010)

    Article  MATH  Google Scholar 

  14. Mishra, S., Tadmor, E.: Constraint preserving schemes using potential-based fluxes. I. Multidimensional transport equations. Commun. Comput. Phys. 9(3), 688–710 (2010)

    MathSciNet  Google Scholar 

  15. Qian, X., Balbás, J., Bhattacharjee, A., Yang, H.: A numerical study of magentic reconnection: A central scheme for Hall MHD. In: Tadmor, E., Liu, J.-G., Tzavaras, A. (eds.) Hyperbolic Problems: Theory, Numerics, Applications. Proceedings of the 12th International Conference held in University of Maryland, June 2008. AMS Proc. Symp. Applied Math., vol. 67, pp. 879–888 (2008)

    Google Scholar 

  16. Strand, B.: Summation by parts for finite difference approximations for d/dx. J. Comput. Phys. 110, 47–67 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. Svärd, M., Nordström, J.: On the order of accuracy for difference approximations of initial-boundary value problems. J. Comput. Phys. 218, 333–352 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Torrilhon, M., Fey, M.: Constraint-preserving upwind methods for multidimensional advection equations. SIAM J. Numer. Anal. 42(4), 1694–1728 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Toth, G., Ma, Y.J., Gombosi, T.I.: Hall magnetohydrodynamics on block adaptive grids. J. Comput. Phys. 227, 6967–6984 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Corti.

Additional information

Communicated by Per Lötstedt.

Appendix: Finite difference operators

Appendix: Finite difference operators

The different operators used in our numerical experiment, are based on one dimensional operators coupled together with Kronecker product. The one dimensional operators are given for q=x,y,z in matrix form:

  • Second order central difference

    $$D^{(2)}_{q}=P_q^{-1}Q= \frac{1}{2 \varDelta q} \begin{pmatrix} -2 & 2 & & & \\ -1 & 0 & 1 & &\\ &\ddots& \ddots& \ddots&\\ && -1 & 0 & 1 \\ &&& -2 & 2 \end{pmatrix} , \qquad P_q=\varDelta q \begin{pmatrix} \frac{1}{2} & & & &\\ & 1 & & & \\ &&\ddots&&\\ &&&1& \\ &&&&\frac{1}{2} \end{pmatrix} . $$
  • Fourth order central difference

Combining this operators we obtain the two spatial discretisation used in the numerical experiments.

We give the discrete derivative for the x direction, the ones for the other spatial directions are defined analogously.

Standard second and fourth order operator are

$$\mathfrak {d}_x=D^{(k)}_x \otimes I_y \otimes I_z, \quad k=2,4 $$

where I q are the identity matrices.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corti, P., Mishra, S. Stable finite difference schemes for the magnetic induction equation with Hall effect. Bit Numer Math 52, 905–932 (2012). https://doi.org/10.1007/s10543-012-0383-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-012-0383-3

Keywords

Mathematics Subject Classification

Navigation