Skip to main content
Log in

Sparse grids and hybrid methods for the chemical master equation

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

The direct numerical solution of the chemical master equation (CME) is usually impossible due to the high dimension of the computational domain. The standard method for solution of the equation is to generate realizations of the chemical system by the stochastic simulation algorithm (SSA) by Gillespie and then taking averages over the trajectories. Two alternatives are described here using sparse grids and a hybrid method. Sparse grids, implemented as a combination of aggregated grids are used to address the curse of dimensionality of the CME. The aggregated components are selected using an adaptive procedure. In the hybrid method, some of the chemical species are represented macroscopically while the remaining species are simulated with SSA. The convergence of variants of the method is investigated for a growing number of trajectories. Two signaling cascades in molecular biology are simulated with the methods and compared to SSA results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. Adalsteinsson, D. McMillen, and T. E. Elston, Biochemical Network Stochastic Simulator (BioNetS): software for stochastic modeling of biochemical networks, BMC Bioinform., 5 (2004), 24.

  2. D. F. Anderson, Incorporating postleap checks in tau-leaping, J. Chem. Phys., 128 (2008), 054103.

    Google Scholar 

  3. A. Arkin, J. Ross, and H. H. McAdams, Stochastic kinetic analysis of developmental pathway bifurcation in phage λ-infected Escherichia coli cells, Genetics, 149 (1998), pp. 1633–1648.

    Google Scholar 

  4. N. Barkai and S. Leibler, Circadian clocks limited by noise, Nature, 403 (2000), pp. 267–268.

    Google Scholar 

  5. H.-J. Bungartz and M. Griebel, Sparse grids, Acta Numer., 13 (2004), pp. 147–269.

    Article  MathSciNet  Google Scholar 

  6. K. Burrage, M. Hegland, S. MacNamara, and R. B. Sidje, A Krylov-based finite state projection algorithm for solving the chemical master equation arising in the discrete modeling of biological systems, in Proceedings of the 150th Markov Anniversary Meeting, A. N. Langville and W. J. Stewart, eds., Boson Books, Raleigh, NC, 2006, pp. 21–38.

    Google Scholar 

  7. Y. Cao, D. Gillespie, and L. Petzold, Multiscale stochastic simulation algorithm with stochastic partial equilibrium assumption for chemically reacting systems, J. Comput. Phys., 206 (2005), pp. 395–411.

    Article  MATH  MathSciNet  Google Scholar 

  8. Y. Cao, H. Li, and L. Petzold, Efficient formulation of the stochastic simulation algorithm for chemically reacting systems, J. Chem. Phys., 121 (2004), pp. 4059–4067.

    Article  Google Scholar 

  9. W. E, D. Liu and E. Vanden-Eijnden, Nested stochastic simulation algorithm for chemical kinetic systems with multiple time scales, J. Comput. Phys., 221 (2007), pp. 158–180.

    Article  MATH  MathSciNet  Google Scholar 

  10. M. B. Elowitz, A. J. Levine, E. D. Siggia, and P. S. Swain, Stochastic gene expression in a single cell, Science, 297 (2002), pp. 1183–1186.

    Article  Google Scholar 

  11. S. Engblom, Computing the moments of high dimensional solutions of the master equation, Appl. Math. Comput., 180 (2006), pp. 498–515.

    Article  MATH  MathSciNet  Google Scholar 

  12. S. Engblom, A Discrete Spectral Method for the Chemical Master Equation, Technical report 2008-005, Dept. of Information Technology, Uppsala University, Uppsala, Sweden, 2008, available at http://www.it.uu.se/research/publications/reports/2008-005/.

  13. R. Erban, I. G. Kevrekidis, D. Adalsteinsson, and T. C. Elston, Gene regulatory networks: A coarse-grained, equation-free approach to multiscale computation, J. Chem. Phys., 124 (2006), 084106.

    Google Scholar 

  14. L. Ferm and P. Lötstedt, Adaptive solution of the master equation in low dimensions, Appl. Numer. Math., in press, 2008, doi:10.1016/j.apnum.2008.01.004.

  15. C. W. Gardiner, Handbook of Stochastic Methods, 3rd edn., Springer, Berlin, 2004.

    MATH  Google Scholar 

  16. M. A. Gibson, J. Bruck, Efficient exact stochastic simulation of chemical systems with many species and many channels, J. Phys. Chem., 104 (2000), pp. 1876–1889.

    Google Scholar 

  17. D. T. Gillespie, A general method for numerically simulating the stochastic time evolution of coupled chemical reactions, J. Comput. Phys., 22 (1976), pp. 403–434.

    Article  MathSciNet  Google Scholar 

  18. D. T. Gillespie, Approximate accelerated stochastic simulation of chemically reacting systems, J. Chem. Phys., 115 (2001), pp. 1716–1733.

    Article  Google Scholar 

  19. D. T. Gillespie and L. R. Petzold, Numerical simulation for biochemical kinetics, in System Modeling in Cellular Biology. From Concepts to Nuts and Bolts, Z. Szallasi, J. Stelling, and V. Periwal, eds., MIT Press, Cambridge, MA, 2006, pp. 331–353.

    Google Scholar 

  20. E. Haseltine and J. Rawlings, Approximate simulation of coupled fast and slow reactions for stochastic chemical kinetics, J. Chem. Phys., 117 (2002), pp. 6959–6969.

    Article  Google Scholar 

  21. M. Hegland, C. Burden, L. Santoso, S. MacNamara, and H. Booth, A solver for the stochastic master equation applied to gene regulatory networks, J. Comput. Appl. Math., 205 (2007), pp. 708–724.

    Article  MATH  MathSciNet  Google Scholar 

  22. A. Hellander and P. Lötstedt, Hybrid method for the chemical master equation, J. Comput. Phys., 227 (2007), pp. 100–122.

    Article  MATH  Google Scholar 

  23. C.-Y. F. Huang and J. E. Ferrel Jr., Ultrasensitivity in the mitogen-activated protein kinase cascade, Proc. Natl. Acad. Sci. USA., 93 (1996), pp. 10078–10083.

    Article  Google Scholar 

  24. L. Huber, Mathematical modeling, numerical approximation and computational exploration of gene regulatory processes in the lambda phage, M.Sc. thesis, Centre for Mathematics and its Applications, Australian National University, Canberra, Australia, 2006.

    Google Scholar 

  25. T. Jahnke and W. Huisinga, Solving the chemical master equation for monomolecular reaction systems analytically, J. Math. Biol., 54 (2007), pp. 1–26.

    Article  MathSciNet  Google Scholar 

  26. B. N. Kholodenko, Negative feedback and ultrasensitivity can bring about oscillations in the mitogen-activated protein kinase cascades, Eur. J. Biochem., 267 (2000), pp. 1583–1588.

    Article  Google Scholar 

  27. D. Longo and J. Hasty, Dynamics of single-cell gene expression, Mol. Syst. Biol., 2 (2006), 64.

    Google Scholar 

  28. P. Lötstedt and L. Ferm, Dimensional reduction of the Fokker–Planck equation for stochastic chemical reactions, Multiscale Methods Simul., 5 (2006), pp. 593–614.

    Article  MATH  Google Scholar 

  29. S. MacNamara, K. Burrage, and R. B. Sidje, Multiscale modeling of chemical kinetics via the master equation, Multiscale Methods Simul., 6 (2008), pp. 1146–1168.

    Article  MathSciNet  MATH  Google Scholar 

  30. H. H. McAdams and A. Arkin, It’s a noisy business. Genetic regulation at the nanomolar scale, Trends Gen., 15 (1999), pp. 65–69.

    Article  Google Scholar 

  31. J. M. McCollum, G. D. Peterson, C. D. Cox, M. L. Simpson, and N. F. Samtova, The sorting direct method for stochastic simulation of biochemical systems with varying reaction execution behaviour, Comput. Biol. Chem., 30 (2005), pp. 39–49.

    Article  Google Scholar 

  32. J. Paulsson, O. G. Berg, and M. Ehrenberg, Stochastic focusing: Fluctuation-enhanced sensitivity of intracellular regulation, Proc. Natl. Acad. Sci. USA, 97 (2000), pp. 7148–7153.

    Article  Google Scholar 

  33. J. Paulsson and J. Elf, Stochastic modeling of intracellular kinetics, in System Modeling in Cellular Biology. From Concepts to Nuts and Bolts, Z. Szallasi, J. Stelling, and V. Periwal, eds., MIT Press, Cambridge, MA, 2006, pp. 149–175.

    Google Scholar 

  34. M. F. Pettigrew and H. Resat, Multinomial tau-leaping method for stochastic kinetic simulations, J. Chem. Phys., 126 (2007), 084101.

    Google Scholar 

  35. H. Qian, S. Saffarian, and E. L. Elson, Concentration fluctuations in a mesoscopic oscillating chemical reaction system, Proc. Natl. Acad. Sci. USA, 99 (2002), pp. 10376–10381.

    Article  MATH  MathSciNet  Google Scholar 

  36. C. V. Rao and A. P. Arkin, Stochastic chemical kinetics and the quasi-steady-state assumption: Application to the Gillespie algorithm, J. Chem. Phys., 118 (2003), pp. 4999–5010.

    Article  Google Scholar 

  37. M. Rathinam, L. R. Petzold, Y. Cao, and D. T. Gillespie, Stiffness in stochastic chemically reacting systems: The implicit tau-leaping method, J. Chem. Phys., 119 (2003), pp. 12784–12794.

    Article  Google Scholar 

  38. H. Salis and Y. Kaznessis, Accurate hybrid stochastic simulation of a system of coupled chemical or biochemical reactions, J. Chem. Phys., 122 (2005), 054103.

    Google Scholar 

  39. A. Samant and D. G. Vlachos, Overcoming stiffness in stochastic simulation stemming from partial equilibrium: A multiscale Monte Carlo algorithm, J. Chem. Phys., 123 (2005), 144114.

    Google Scholar 

  40. P. Sjöberg, Numerical Methods for Stochastic Modeling of Genes and Proteins, Ph.D. thesis, Department of Information Technology, Uppsala University, Uppsala, Sweden, 2007.

  41. P. Sjöberg, P. Lötstedt, and J. Elf, Fokker–Planck approximation of the master equation in molecular biology, to appear in Comput. Vis. Sci., 2008, doi 10.1007/s00791-006-0045-6.

  42. N. G. van Kampen, Stochastic Processes in Physics and Chemistry, North-Holland, Amsterdam, 1992.

    Google Scholar 

  43. J. M. G. Vilar, H. Y. Kueh, N. Barkai, and S. Leibler, Mechanisms of noise-resistance in genetic oscillators, Proc. Natl. Acad. Sci., 99 (2002), pp. 5988–5992.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Per Lötstedt.

Additional information

AMS subject classification (2000)

65C20, 60J25, 92C45

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hegland, M., Hellander, A. & Lötstedt, P. Sparse grids and hybrid methods for the chemical master equation . Bit Numer Math 48, 265–283 (2008). https://doi.org/10.1007/s10543-008-0174-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-008-0174-z

Key words

Navigation