Skip to main content
Log in

Environmental complexity, adaptability and bacterial cognition: Godfrey-Smith’s hypothesis under the microscope

  • Published:
Biology & Philosophy Aims and scope Submit manuscript

A Commentary to this article was published on 18 March 2017

Abstract

The paper presents evidence in bacteria for the utility of Godfrey-Smith’s environmental complexity thesis (ECT), using certain kinds of signal transduction systems as proxies for cognitive/behavioral complexity. Microbiologists already accept that the number of signal transduction proteins in a bacterial genome indicates the level of ecological complexity to which the organism is subject: the more signalling proteins, the greater the complexity. Sheer numbers are not always a reliable indicator of behavioral complexity, however. The paper proposes a new, ECT-based procedure for identifying, from genomic sequence and signalling repertoire, novel bacterial candidates likely to exhibit behavioral complexity in response to a complex ecological niche.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. I am indebted to Fred Keijzer for this observation.

References

  • Adler J (1966) Chemotaxis in bacteria. Science 153(3737):708–716

    Article  Google Scholar 

  • Adler J (1969) Chemoreceptors in bacteria. Science 166(3913):1588–1597

    Article  Google Scholar 

  • Adler J, Tso W-W (1974) ‘Decision’-making in bacteria: chemotactic response of Escherichia coli to conflicting stimuli. Science 184(4143):1292–1294

    Article  Google Scholar 

  • Alberini CM (2009) Transcription factors in long-term memory and synaptic plasticity. Physiol Rev 89(1):121–145

    Article  Google Scholar 

  • Alberini CM, LeDoux JE (2013) Memory reconsolidation. Curr Biol 23(17):R746–R750

    Article  Google Scholar 

  • Aravind L, Burroughs AM, Zhang D, Iyer LM (2014) Protein and DNA modifications: evolutionary imprints of bacterial biochemical diversification and geochemistry on the provenance of eukaryotic epigenetics. Cold Spring Harb Perspect Biol 6(7):a016063

  • Arshavsky VY, Burns ME (2012) Photoreceptor signaling: supporting vision across a wide range of light intensities. J Biol Chem 287(3):1620–1626

    Article  Google Scholar 

  • Baker MD, Stock JB (2007) Signal transduction: networks and integrated circuits in bacterial cognition. Curr Biol 17(23):R1021–R1024

    Article  Google Scholar 

  • Barrett LF (2006) Valence is a basic building block of emotional life. J Res Personal 40:35–55

    Article  Google Scholar 

  • Barrios E (2007) Soil biota, ecosystem services and land productivity. Ecol Econ 64(2):269–285

    Article  Google Scholar 

  • Barry RJ (2012) Habituation and sensitization. In: Seel NM (ed) Encyclopedia of the sciences of learning. Springer, Boston, pp 1413–1414

    Google Scholar 

  • Ben-Jacob E, Becker I, Shapira Y, Levine H (2004) Bacterial linguistic communication and social intelligence. Trends Microbiol 12(8):366–372

    Article  Google Scholar 

  • Berg HC (1975) Chemotaxis in bacteria. Annu Rev Biophys Bioeng 4(1):119–136

    Article  Google Scholar 

  • Berg HC, Brown DA (1972) Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Nature 239:500–504

    Article  Google Scholar 

  • Bergman TJ, Beehner JC (2015) Measuring social complexity. Anim Behav 103:203–209

    Article  Google Scholar 

  • Berleman JE, Kirby JR (2009) Deciphering the hunting strategy of a bacterial wolfpack. FEMS Microbiol Rev 33(5):942–957

    Article  Google Scholar 

  • Bindra D (1959) Motivation: a systematic reinterpretation. Ronald Press, New York

    Google Scholar 

  • Bird CM, Burgess N (2008) The hippocampus supports recognition memory for familiar words but not unfamiliar faces. Curr Biol 18(24):1932–1936

    Article  Google Scholar 

  • Bourret RB, Silversmith RE (2010) Two-component signal transduction. Curr Opin Microbiol 13(2):113–115

    Article  Google Scholar 

  • Bray D (2002) Bacterial chemotaxis and the question of gain. PNAS 99(1):7–9

    Article  Google Scholar 

  • Bray D (2009) Wetware: a computer in every living cell. Yale University Press, New Haven

    Google Scholar 

  • Briegel A, Ortega DR, Tocheva EI, Wuichet K, Li Z, Chen S, Müller A, Iancu CV, Murphy GE, Dobro MJ, Zhulin IB, Jensen GJ (2009) Universal architecture of bacterial chemoreceptor arrays. Proc Natl Acad Sci 106(40):17181–17186

    Article  Google Scholar 

  • Brooks R (1991) Intelligence without representation. Artif Intell 47(1–3):139–159

    Article  Google Scholar 

  • Campagne S, Allain FHT, Vorholt JA (2015) Extra cytoplasmic function sigma factors, recent structural insights into promoter recognition and regulation. Curr Opin Struct Biol 30:71–78

    Article  Google Scholar 

  • Capra EJ, Laub MT (2012) Evolution of two-component signal transduction systems. Annu Rev Microbiol 66(1):325–347

    Article  Google Scholar 

  • Castillo-Morales A, Monzón-Sandoval J, Urrutia AO, Gutiérrez H (2013) Increased brain size in mammals is associated with size variations in gene families with cell signalling, chemotaxis and immune-related functions. Proc R Soc London B: Biol Sci. doi:10.1098/rspb.2013.2428

  • Chao JD, Wong D, Av-Gay Y (2014) Microbial protein-tyrosine kinases. J Biol Chem 289(14):9463–9472

    Article  Google Scholar 

  • Collins B, Kaplan HS, Cavey M, Lelito KR, Bahle AH, Zhu Z, Macara AM, Roman G, Shafer OT, Blau J (2014) Differentially timed extracellular signals synchronize pacemaker neuron clocks. PLoS Biol 12(9):e1001959

    Article  Google Scholar 

  • Damasio AR (1995) Descartes’ error: emotion, reason and the human brain. Avon Books, New York

    Google Scholar 

  • Devos DP (2013) Gemmata obscuriglobus. Curr Biol 23(17):R705–R707

    Article  Google Scholar 

  • di Primio F, Müller BS, and Lengeler JW (2000). Minimal cognition in unicellular organisms. SAB 2000, 6th International Conference on the Simulation of Adaptive Behaviour, Paris, International Society for Adaptive Behaviour

  • Fenchel T (2002) Microbial behavior in a heterogeneous world. Science 296(5570):1068–1071

    Article  Google Scholar 

  • Galperin MY (2005) A census of membrane-bound and intracellular signal transduction proteins in bacteria: bacterial IQ, extroverts and introverts. BMC Microbiol 5:35

    Article  Google Scholar 

  • Galperin MY (2014) Sensory transduction in bacteria. Ref Modul Biomed Sci. doi:10.1016/B978-0-12-801238-3.02458-2

    Google Scholar 

  • Galperin MY, Higdon R, Kolker E (2010) Interplay of heritage and habitat in the distribution of bacterial signal transduction systems. Mol BioSyst 6(4):721–728

    Article  Google Scholar 

  • Godfrey-Smith P (1996) Complexity and the function of mind in nature. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Godfrey-Smith P (2002) Environmental complexity, signal detection, and the evolution of cognition. In: Bekoff M, Allen C, Burghardt G (eds) The cognitive animal: empirical and theoretical perspectives on animal cognition. MIT Press/Bradford Book, Cambridge and London, pp 135–141

    Google Scholar 

  • Gruber TM, Gross CA (2003) Multiple sigma subunits and the partitioning of bacterial transcription space. Annu Rev Microbiol 57(1):441–466

    Article  Google Scholar 

  • Hellingwerf KJ, Postma PW, Tommassen J, Westerhoff HV (1995) Signal transduction in bacteria: phospho-neural network(s) in Escherichia coli? FEMS Microbiol Rev 16(4):309–321

    Article  Google Scholar 

  • Hoffer SM, Westerhoff HV, Hellingwerf KJ, Postma PW, Tommassen J (2001) Autoamplification of a two-component regulatory system results in “learning” behavior. J Bacteriol 183(16):4914–4917

    Article  Google Scholar 

  • Hsieh Y-J, Wanner BL (2010) Global regulation by the seven-component Pi signaling system. Curr Opin Microbiol 13(2):198–203

    Article  Google Scholar 

  • Hunter T (2012) Why nature chose phosphate to modify proteins. Philos Trans R Soc Lond B: Biol Sci 367(1602):2513–2516

    Article  Google Scholar 

  • Jahnke S, Memmesheimer R-M, Timme M (2014) Oscillation-induced signal transmission and gating in neural circuits. PLoS Comput Biol 10(12):e1003940

    Article  Google Scholar 

  • James W (1890) The principles of psychology. Dover Publications Inc, New York

    Book  Google Scholar 

  • Jennings, H. S. (1905/1962). Behavior of the Lower Organisms. Bloomington, Indiana University Press

  • Jogler C, Waldmann J, Huang X, Jogler M, Glöckner FO, Mascher T, Kolter R (2012) Identification of proteins likely to be involved in morphogenesis, cell division, and signal transduction in planctomycetes by comparative genomics. J Bacteriol 194(23):6419–6430

    Article  Google Scholar 

  • Kaiser AD (2013) Are myxobacteria intelligent? Front Microbiol. doi:10.3389/fmicb.2013.00335

  • Kaiser D (2015) Signaling in swarming and aggregating myxobacteria. In: Ruiz-Trillo I, Nedelcu MA (eds) Evolutionary transitions to multicellular life: principles and mechanisms. Springer, Dordrecht, pp 469–485

    Google Scholar 

  • Keijzer F (2001) Representation and behavior. MIT Press/Bradford Book, Cambridge/London

    Google Scholar 

  • Koshland DE Jr (1977) A response regulator model in a simple sensory system. Science 196(4294):1055–1063

    Article  Google Scholar 

  • Koshland DE (1980a) Bacterial chemotaxis in relation to neurobiology. Annu Rev Neurosci 3(1):43–75

    Article  Google Scholar 

  • Koshland DE Jr (1980b) Bacterial chemotaxis as a model behavioral system. Raven Press, New York

    Google Scholar 

  • Koshland DE, Goldbeter A, Stock JB (1982) Amplification and adaptation in regulatory and sensory systems. Science 217(4556):220–225

    Article  Google Scholar 

  • Krell T, Lacal J, Busch A, Silva-Jiménez H, Guazzaroni M-E, Ramos JL (2010) Bacterial sensor kinases: diversity in the recognition of environmental signals. Annu Rev Microbiol 64(1):539–559

    Article  Google Scholar 

  • Lazarus RS (1990) Constructs of the mind in adaptation. In: Stein N, Leventhal B, Trabasso T (eds) Psychological and biological approaches to emotion. Lawrence Erlbaum, Hillsdale, pp 3–19

    Google Scholar 

  • Lengeler JW, Müller BS, di Primio F (2000) Neubewertung kognitiver Leistungen im Lichte der Fähigkeiten enzelliger Lebewesen (A reevaluation of cognitive capacities in light of the capacities of unicellular organisms). Kognitionswissenschaft 8:160–178

    Article  Google Scholar 

  • Lyon P (2006) The biogenic approach to cognition. Cogn Process 7(1):11–29

    Article  Google Scholar 

  • Lyon P (2011) To be or not to be: Where is self-preservation in evolutionary theory? In: Calcott B, Sterelny K (eds) The major transitions in evolution revisited. MIT Press, Cambridge, pp 105–125

    Chapter  Google Scholar 

  • Lyon, P. (2015). “The cognitive cell: bacterial behaviour reconsidered.” Frontiers in Microbiology 6

  • Macnab RM, Koshland DE (1972) The gradient-sensing mechanism in bacterial chemotaxis. PNAS 69(9):2509–2512

    Article  Google Scholar 

  • Mascher T (2013) Signaling diversity and evolution of extracytoplasmic function (ECF) σ factors. Curr Opin Microbiol 16(2):148–155

    Article  Google Scholar 

  • Maturana, H. R. (1970/1980). Biology of Cognition. Autopoiesis and Cognition: The Realization of the Living. H. R. Maturana and F. J. Varela. Dordrecht, D. Reidel Publishing Company. 42: 1-58

  • Mitchell A, Romano GH, Groisman B, Yona A, Dekel E, Kupiec M, Dahan O, Pilpel Y (2009) Adaptive prediction of environmental changes by microorganisms. Nature 460(7252):220–224

  • Nickerson RS (1966) Response times with a memory-dependent decision task. J Exp Psychol 72(5):761–769

    Article  Google Scholar 

  • Parkinson JS, Hazelbauer GL, Falke JJ (2015) Signaling and sensory adaptation in Escherichia coli chemoreceptors: 2015 update. Trends Microbiol 23(5):257–266

    Article  Google Scholar 

  • Pérez J, Castañeda-García A, Jenke-Kodama H, Müller R, Muñoz-Dorado J (2008) Eukaryotic-like protein kinases in the prokaryotes and the myxobacterial kinome. Proc Natl Acad Sci 105(41):15950–15955

    Article  Google Scholar 

  • Pincus D, Letunic I, Bork P, Lim WA (2008) Evolution of the phospho-tyrosine signaling machinery in premetazoan lineages. Proc Natl Acad Sci 105(28):9680–9684

    Article  Google Scholar 

  • Pinto D, Mascher T (2016) (Actino)Bacterial “intelligence”: using comparative genomics to unravel the information processing capacities of microbes. Curr Genet 62(3):487–498

    Article  Google Scholar 

  • Pinto D, Santos MA, Chambel L (2013) Thirty years of viable but nonculturable state research: unsolved molecular mechanisms. Crit Rev Microbiol 41(1):61–76

    Article  Google Scholar 

  • Prindle A, Liu J, Asally M, Ly S, Garcia-Ojalvo J, Suel GM (2015) Ion channels enable electrical communication in bacterial communities. Nature 527(7576):59–63

    Article  Google Scholar 

  • Reguera G (2011) When microbial conversations get physical. Trends Microbiol 19(3):105–113

    Article  Google Scholar 

  • Santarella-Mellwig R, Pruggnaller S, Roos N, Mattaj IW, Devos DP (2013) Three-dimensional reconstruction of bacteria with a complex endomembrane system. PLoS Biol 11(5):e1001565

    Article  Google Scholar 

  • Schneiker S, Perlova O, Kaiser O, Gerth K, Alici A, Altmeyer MO, Bartels D, Bekel T, Beyer S, Bode E, Bode HB, Bolten CJ, Choudhuri JV, Doss S, Elnakady YA, Frank B, Gaigalat L, Goesmann A, Groeger C, Gross F, Jelsbak L, Jelsbak L, Kalinowski J, Kegler C, Knauber T, Konietzny S, Kopp M, Krause L, Krug D, Linke B, Mahmud T, Martinez-Arias R, McHardy AC, Merai M, Meyer F, Mormann S, Munoz-Dorado J, Perez J, Pradella S, Rachid S, Raddatz G, Rosenau F, Ruckert C, Sasse F, Scharfe M, Schuster SC, Suen G, Treuner-Lange A, Velicer GJ, Vorholter F-J, Weissman KJ, Welch RD, Wenzel SC, Whitworth DE, Wilhelm S, Wittmann C, Blocker H, Puhler A, Muller R (2007) Complete genome sequence of the myxobacterium Sorangium cellulosum. Nat Biotech 25(11):1281–1289

    Article  Google Scholar 

  • Shapiro JA (1998) Thinking about bacterial populations as multicellular organisms. Annu Rev: Microbiol 52:81–104

    Google Scholar 

  • Shapiro JA (2007) Bacteria are small but not stupid: cognition, natural genetic engineering and socio-bacteriology. Stud Hist Philos Biol Biomed Sci 38(4):807–819

    Article  Google Scholar 

  • Staroń A, Sofia HJ, Dietrich S, Ulrich LE, Liesegang H, Mascher T (2009) The third pillar of bacterial signal transduction: classification of the extracytoplasmic function (ECF) σ factor protein family. Mol Microbiol 74(3):557–581

    Article  Google Scholar 

  • Stewart J (1996) Cognition = life: implications for higher-level cognition. Behav Process 35(1–3):311–326

    Google Scholar 

  • Stock JB, Levit MN, Wolanin PM (2002) “Information processing in bacterial chemotaxis” Science’s Signal Transduction Knowledge Environment (STKE) http://www.stke.org/cgi/content/full/OC_sigtrans;2002/132/pe25

  • Stotz K, Allen C (2012) From cell-surface receptors to higher learning: a whole world of experience. In: Plaisance KS, Reydon TAC (eds) Philosophy of Behavioral Biology, vol 282. Springer, New York, pp 85–123

    Chapter  Google Scholar 

  • Sugi T, Ohtani Y, Kumiya Y, Igarashi R, Shirakawa M (2014) High-throughput optical quantification of mechanosensory habituation reveals neurons encoding memory in Caenorhabditis elegans. Proc Natl Acad Sci 111(48):17236–17241

    Article  Google Scholar 

  • Taylor BL (2004) An alternative strategy for adaptation in bacterial behavior. J Bacteriol 186(12):3671–3673

    Article  Google Scholar 

  • Tso W-W, Adler J (1974) Negative chemotaxis in Escherichia coli. J Bacteriol 118(2):560–576

    Google Scholar 

  • Ulrich LE, Zhulin IB (2010) The MiST2 database: a comprehensive genomics resource on microbial signal transduction. Nucleic Acids Res 38(suppl 1):D401–D407

    Article  Google Scholar 

  • Ulrich LE, Koonin EV, Zhulin IB (2005) One-component systems dominate signal transduction in prokaryotes. Trends Microbiol 13(2):52–56

    Article  Google Scholar 

  • van Duijn M, Keijzer F, Franken D (2006) Principles of minimal cognition: casting cognition as sensorimotor coordination. Adaptive Behavior 14(2):157–170

    Article  Google Scholar 

  • Velicer GJ, Vos M (2009) Sociobiology of the myxobacteria. Annu Rev Microbiol 63(1):599–623

    Article  Google Scholar 

  • Vertosick FTJ (2002) The genius within: discovering the intelligence of every living thing. Harcourt Inc, New York

    Google Scholar 

  • Washburn MF (1936) The animal mind: a text-book of comparative psychology. The MacMillan Company, New York

    Book  Google Scholar 

  • Williams P, mara MC (2009) Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. Curr Opin Microbiol 12(2):182–191

    Article  Google Scholar 

  • Wolf DM, Fontaine-Bodin L, Bischofs I, Price G, Keasling J, Arkin AP (2008) Memory in microbes: quantifying history-dependent behavior in a bacterium. PLoS ONE 3(2):e1700

    Article  Google Scholar 

  • Yamamoto K, Hirao K, Oshima T, Aiba H, Utsumi R, Ishihama A (2005) Functional characterization in vitro of all two-component signal transduction systems from Escherichia coli. J Biol Chem 280(2):1448–1456

    Article  Google Scholar 

  • Yang Z, Higgs PI (eds) (2014) Myxobacteria: genomics, celluiar and molecular biology. Caister Academic Press, Poole

    Google Scholar 

Download references

Acknowledgements

I would like to thank Fred Keijzer, Daniela Pinto, Eva Jablonka, Peter Lekkas and Michael Galperin for invaluable comments on drafts of this work, and Richard Bradshaw for making it possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pamela Lyon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyon, P. Environmental complexity, adaptability and bacterial cognition: Godfrey-Smith’s hypothesis under the microscope. Biol Philos 32, 443–465 (2017). https://doi.org/10.1007/s10539-017-9567-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10539-017-9567-1

Keywords

Navigation