Skip to main content
Log in

Nitric oxide acts downstream of hydrogen peroxide in the regulation of ascorbate and glutathione metabolism by jasmonic acid in Agropyron cristatum leaves

  • Brief Communication
  • Published:
Biologia Plantarum

Abstract

The relationship between hydrogen peroxide (H2O2) and nitric oxide (NO) in the regulation of ascorbate and glutathione metabolism by jasmonic acid (JA) in Agropyron cristatum leaves were studied. Results showed that JA increased the production of H2O2 and NO, the activities of ascorbate peroxidase (APX), glutathione reductase (GR), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), L-galactono-1,4-lactone dehydrogenase (GalLDH), and γ-glutamylcysteine synthetase (γ-ECS), as well as transcription of the respective genes and also the content of reduced ascorbate (AsA) and reduced glutathione (GSH). Above increases were suppressed by pre-treatments with H2O2 synthesis inhibitor diphenylene iodonium (DPI), H2O2 scavenger dimethylthiourea (DMTU), NO synthesis inhibitor N G-nitro-L-Arg methyl ester (L-NAME), and NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO). Pre-treatments with DPI and DMTU reduced H2O2 and NO production. Pre-treatments with L-NAME and cPTIO reduced NO production, but did not reduce the H2O2 production induced by JA. Our results suggested that NO acted downstream of H2O2 in JA signalling in the up-regulation of ascorbate and glutathione metabolism in A. cristatum leaves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

ABA:

abscisic acid

APX:

ascorbate peroxidase

AsA:

ascorbate

cPTIO:

2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide

DHAR:

dehydroascorbate reductase

DMTU:

dimethylthiourea

DPI:

diphenylene iodonium

GalLDH:

L-galactono-1,4-lactone dehydrogenase

γ-ECS:

γ-glutamylcysteine synthetase

GR:

glutathione reductase

GSH:

reduced glutathione

JA:

jasmonic acid

L-NAME:

N G-nitro-L-Arg methyl ester

MDHAR:

monodehydroascorbate reductase

SA:

salicylic acid

References

  • Abramowski, D., Arasimowicz-Jelonek, M., Izbianska, K., Billert, H., Floryszak-Wieczorek, J.: Nitric oxide modulates redox-mediated defense in potato challenged with Phytophthora infestans. — Eur. J. Plant Pathol. 143: 237–260, 2015.

    Article  CAS  Google Scholar 

  • Ai, L., Li, Z.H., Xie, Z.X., Tian, X.L., Eneji, A.E., Duan, L.S.: Coronatine alleviates polyethylene glycol-induced water stress in two rice (Oryza sativa L.) cultivars. — J. Agron. Crop Sci. 194: 360–368, 2008.

    Article  CAS  Google Scholar 

  • Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. — Anal. Biochem. 72: 248–254, 1976.

    Article  CAS  PubMed  Google Scholar 

  • Chen, H., Shao, K., Wang, S.: Light-modulated seminal wavy roots in rice mediated by nitric oxide-dependent signaling. — Protoplasma 252: 1291–1304, 2015.

    Article  CAS  PubMed  Google Scholar 

  • Cheng, T.L., Chen, J.H., Abd Allah, E.F., Wang, P.K., Wang, G.P., Hu, X.Y., Shi, J.S.: Quantitative proteomics analysis reveals that S-nitrosoglutathione reductase (GSNOR) and nitric oxide signaling enhance poplar defense against chilling stress. — Planta 242: 1361–1390, 2015.

    Article  CAS  PubMed  Google Scholar 

  • Chou, T., Chao, Y., Kao, C.: Involvement of hydrogen peroxide in heat shock- and cadmium-induced expression of ascorbate peroxidase and glutathione reductase in leaves of rice seedlings. — J. Plant Physiol. 169: 478–486, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Dai, H., Jia, G., Shan, C.: Jasmonic acid-induced hydrogen peroxide activates MEK1/2 in upregulating the redox states of ascorbate and glutathione in wheat leaves. — Acta Physiol. Plant. 37: 200, 2015.

    Article  Google Scholar 

  • Dalton, D.A., Russell, S.A., Hanus, F.J., Pascoe, G.A., Evans, H.J.: Enzymatic reactions of ascorbate and glutathione that prevent peroxide damage in soybean root nodules. — Proc. nat. Acad. Sci. USA 83: 3811–3815, 1986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dringen, R.: Glutathione metabolism and oxidative stress in neurodegeneration. — Eur. J. Biochem. 267: 4903, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Furlan, A., Llanes, A., Luna, V., Castro, S.: Abscisic acid mediates hydrogen peroxide production in peanut induced by water stress. — Biol. Plant. 57: 555–558, 2013.

    Article  CAS  Google Scholar 

  • Gonzalez, A., Cabrera, M.D., Henriquez, M.J., Contreras, R.A., Morales, B., Moenne, A.: Cross talk among calcium, hydrogen peroxide, and nitric oxide and activation of gene expression involving calmodulins and calcium-dependent protein kinases in Ulva compressa exposed to copper excess. — Plant Physiol. 158: 1451–1462, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grace, S.C., Logan, B.A.: Acclimation of foliar antioxidant systems to growth irradiance in three broad-leaved evergreen species. — Plant Physiol. 112: 1631–1640, 1996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffith, O.W.: Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. — Anal. Biochem. 106: 207–212, 1980.

    Article  CAS  PubMed  Google Scholar 

  • Hodges, D.M., Andrews, C.J., Johnson, D.A., Hamilton, R.I.: Antioxidant compound responses to chilling stress in differentially sensitive inbred maize lines. — Plant Physiol. 98: 685–692, 1996.

    Article  CAS  Google Scholar 

  • Innocenti, G., Pucciariello, C., Gleuher, M.L.: Glutathione synthesis is regulated by nitric oxide in Medicago truncatula roots. — Planta 225: 1597–1602, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, M., Zhang, J.: Cross-talk between calcium and reactive oxygen species originated from NADPH oxidase in abscisic acid-induced antioxidant defence in leaves of maize seedlings. — Plant Cell Environ. 26: 929–939, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Kong, X., Zhang, D., Pan, J., Zhou, Y., Li, D.: Hydrogen peroxide is involved in nitric oxide-induced cell death in maize leaves. — Plant Biol. 15: 53–59, 2013.

    Article  CAS  PubMed  Google Scholar 

  • Lum, H.K., Butt, Y.K.C., Lo, S.C.L.: Hydrogen peroxide induces a rapid production of nitric oxide in mung bean (Phaseolus aureus). — Nitric Oxide: Biol. Chem. 6: 205–213, 2002.

    Article  CAS  Google Scholar 

  • Matschi, S., Hake, K., Herde, M., Hause, B., Romeis, T.: The calcium-dependent protein kinase CPK28 regulates development by inducing growth phase-specific, spatially restricted alterations in jasmonic acid levels independent of defense responses in Arabidopsis. — Plant Cell 27: 591–606, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyake, C., Asada, K.: Thylakoid-bound ascorbate peroxidase in spinach chloroplasts and photoreduction of its primary oxidation product monodehydroascorbate radicals in thylakoids. — Plant Cell Physiol. 33: 541–553, 1992.

    CAS  Google Scholar 

  • Mostofa, M.G., Fujita, M., Tran, LS.P.: Nitric oxide mediates hydrogen peroxide- and salicylic acid-induced salt tolerance in rice (Oryza sativa L.) seedlings. — Plant Growth Regul. 77: 265–277, 2015.

    Article  CAS  Google Scholar 

  • Mur, L.A.J., Prats, E., Pierre, S., Hall, M.A., Hebelstrup, K.H.: Integrating nitric oxide into salicylic acid and jasmonic acid/ethylene plant defense pathways. — Front. Plant Sci. 4: 215, 2013.

    PubMed  PubMed Central  Google Scholar 

  • Nakano, Y., Asada, K.: Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. — Plant Cell Physiol. 22: 867–880, 1981.

    CAS  Google Scholar 

  • Noctor, G., Foyer, C.H.: Ascorbate and glutathione: keeping active oxygen under control. — Annu. Rev. Plant Physiol. 49: 249–279, 1998.

    Article  CAS  Google Scholar 

  • Noctor, G., Gomez, L., Vanacker, H., Foyer, C.H.: Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signaling. — J. exp. Bot. 53: 1283–1304, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Qiu, Z.B., Guo, J.L., Zhu, A.J., Zhang, L., Zhang, M.M.: Exogenous jasmonic acid can enhance tolerance of wheat seedlings to salt stress. — Ecotox. Environ. Safety 104: 202–208, 2014.

    Article  CAS  Google Scholar 

  • Rüegsegger, A., Brunold, C.: Effect of cadmium on γ-glutamylcysteine synthesis in maize seedlings. — Plant Physiol. 99: 428–433, 1992.

    Article  PubMed  PubMed Central  Google Scholar 

  • Serrano, I., Romero-Puertas, M.C., Sandalio, L.M., Olmedilla, A.: The role of reactive oxygen species and nitric oxide in programmed cell death associated with self-incompatibility. — J. exp. Bot. 66: 2869–2876, 2015.

    Article  CAS  PubMed  Google Scholar 

  • Shan, C., Liang, Z.: Jasmonic acid regulates ascorbate and glutathione metabolism in Agropyron cristatum leaves under water stress. — Plant Sci. 178: 130–139, 2010.

    Article  CAS  Google Scholar 

  • Shan, C., Liang, Z., Sun, Y., Hao, W., Han, R.: The protein kinase MEK1/2 participates in the regulation of ascorbate and glutathione content by jasmonic acid in Agropyron cristatum leaves. — J Plant Physiol. 168: 514–518, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Shan, C., Zhou, Y., Liu, M.: Nitric oxide participates in the regulation of the ascorbate-glutathione cycle by exogenous jasmonic acid in the leaves of wheat seedlings under drought stress. — Protoplasma 252: 1397–1405, 2015.

    Article  CAS  PubMed  Google Scholar 

  • Song, L.L., Ding, W., Shen, J., Zhang, Z.G., Bi, Y.R., Zhang, L.X.: Nitric oxide mediates abscisic acid induced thermotolerance in the calluses from two ecotypes of reed under heat stress. — Plant Sci. 175: 826–832, 2008.

    Article  CAS  Google Scholar 

  • Sun, C.L., Liu, L.J., Yu, Y., Liu, W.J., Lu, L.L., Jin, C.W., Lin, X.Y.: Nitric oxide alleviates aluminum-induced oxidative damage through regulating the ascorbate-glutathione cycle in roots of wheat. — J. Integr. Plant Biol. 57: 550–561, 2015.

    Article  CAS  PubMed  Google Scholar 

  • Wang, L., Guo, Y.J., Jia, L.X., Chu, H.Y., Zhou, S., Chen, K.M., Wu, D., Zhao, L.Q.: Hydrogen peroxide acts upstream of nitric oxide in the heat shock pathway in Arabidopsis seedlings. — Plant Physiol. 164: 2184–2196, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wheeler, G.L., Jones, M.A., Smirnoff, N.: The biosynthetic pathway of vitamin C in higher plants. — Nature 393: 365–369, 1998.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, F., Wang, Y.P., Yang, Y.L., Wu, H., Wang, D., Liu, J.Q.: Involvement of hydrogen peroxide and nitric oxide in salt resistance in the calluses from Populus euphratica. — Plant Cell Environ. 30: 775–785, 2007.

    Article  PubMed  Google Scholar 

  • Zhao, F.Y., Han, M.M., Zhang, S.Y., Wang, K., Zhang, C.R., Liu, T., Liu, W.: Hydrogen peroxide-mediated growth of the root system occurs via auxin signaling modification and variations in the expression of cell-cycle genes in rice seedlings exposed to cadmium stress. — J. Integr. Plant Biol. 54: 991–1006, 2012.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Shan.

Additional information

Acknowledgements: This study was supported by the Science and Technology Innovation Program of the Henan Institute of Science and Technology in 2011 and 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shan, C., Yang, T. Nitric oxide acts downstream of hydrogen peroxide in the regulation of ascorbate and glutathione metabolism by jasmonic acid in Agropyron cristatum leaves. Biol Plant 61, 779–784 (2017). https://doi.org/10.1007/s10535-017-0708-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-017-0708-9

Additional key words

Navigation