Skip to main content
Log in

Physiological and molecular responses to drought and salinity in soybean

  • Original paper
  • Published:
Biologia Plantarum

Abstract

Drought and salinity are severe environmental stresses and limit soybean growth. In this study, a comparative analysis of physiological and molecular responses of two soybean (Glycine max L.) genotypes to these stresses was carried out. Plants of drought-tolerant genotype RD (cv. FD92) and sensitive genotype SD (cv. Z1303) were exposed to 15 % (m/v) PEG 6000, which simulated drought stress, or 150 mM NaCl. The RD plants maintained larger leaf area and higher net photosynthetic rate, chlorophyll content, stomatal conductance, and relative water content compared with the SD plants. Leaf proline content increased under both stresses more in RD than in SD. The drought tolerance of RD plants was also correlated with greater antioxidant activity and lower content of hydrogen peroxide and malondialdehyde under stress conditions. Amounts of abscisic acid, jasmonic acid, and salicylic acid under stress increased to a greater extent in RD than in SD plants. At the molecular level, the effects of 20-d stress treatments were manifested by relatively higher expression of drought- or salt-related genes: GmP5CS, GmDREB1a, GmGOLS, GmBADH, and GmNCED1 in RD plants than in SD plants. These results form the basis for understanding the mechanisms of the drought- and salt-stress tolerance in soybean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABA:

abscisic acid

BADH:

betaine aldehyde dehydrogenase

Chl:

chlorophyll

DREB1:

dehydration-responsive element-binding

gs :

stomatal conductance

JA:

jasmonic acid

MDA:

malondialdehyde

NCED:

9-cis-epoxy-carotenoid dioxygenase

P5CS:

δ-1-pyrroline-5-carboxylate synthetase

PN :

net photosynthetic rate

RD:

drought tolerant

REC:

relative electric conductivity

RWC:

relative water content

SA:

salicylic acid

SD:

drought sensitive

References

  • Ahuja, I., Devos, R.C.H., Bones, A.M., Hall, R.D.: Plant molecular stress responses face climate change. — Trends Plant Sci. 15: 664–674, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Aimar, D., Calafat, M., Andrade, A.M., Carassay, L., Bouteau, F., Abdala, G., Molas, M.L.: Drought effects on the early development stages of Panicum virgatum L.: cultivar differences. — Field Crops Res. 120: 262–270, 2011.

    Article  Google Scholar 

  • Alexieva, V., Sergiev, I., Mapelli, S., Karanov, E.: The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. — Plant Cell Environ. 24: 1337–1344, 2001.

    Article  CAS  Google Scholar 

  • Al-Karaki, G.N.: Nursery inoculation of tomato with arbuscular mycorrhizal fungi and subsequent performance under irrigation with saline water. — Sci. Hort. 109: 1–7, 2006.

    Article  Google Scholar 

  • Arnon, D.T.: Copper enzymes in isolated chloroplasts. Polyphenaloxidase in Beta vulgaris. — Plant Physiol. 24: 1–15, 1949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrs, H.D., Weatherley, P.E.: A re-examination of the relative turgidity technique for estimating water deficits in leaves. — Aust. J. biol. Sci. 15: 413–428, 1962.

    Article  Google Scholar 

  • Bates, L.S., Waldren, R.P., Teare, I.D.: Rapid determination of free proline for water-stress studies. — Plant Soil 39: 205–207, 1973.

    Article  CAS  Google Scholar 

  • Beyer, W.F., Jr., Fridovich, I.: Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. — Anal. Biochem. 161: 559–566, 1987.

    Article  CAS  PubMed  Google Scholar 

  • Chaparzadeh, N., Mehrnejad, F.: Oxidative markers in five Iranian alfalfa (Medicago sativa L.) cultivars under salinity stress. — Iran J. Plant Physiol. 3: 793–799, 2013.

    Google Scholar 

  • Durgbanshi, A.: Simultaneous determination of multiple phytohormones in plant extracts by liquid chromatography electrospray tandem mass spectrometry. — J. Agr. Food Chem. 53: 8437–8442, 2005.

    Article  CAS  Google Scholar 

  • Fan, X.D., Wang, J.Q., Yang, N., Dong, Y.Y., Liu, L., Wang, F.W., Wang, N., Chen, H., Liu, W.C., Sun, Y.P., Wu, J.Y., Li, H.Y.: Gene expression profiling of soybean leaves and roots under salt, saline-alkali and drought stress by high-throughput Illumina sequencing. — Gene 512: 392–402, 2013.

    Article  CAS  PubMed  Google Scholar 

  • Hameed, A., Bibi, N., Akhter, J., Iqbal, N.: Differential changes in antioxidants, proteases, and lipid peroxidation in flag leaves of wheat genotypes under different levels of water deficit conditions. — Plant Physiol. Biochem. 49: 178–185, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Heath, I.L., Packer, L.: Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. — Arch. Biochem. Biophys. 125: 189–198. 1968.

    Article  CAS  PubMed  Google Scholar 

  • Hoque, M.A., Banu, M.N.A., Okuma, E.: Exogenous proline and glycine betaine increase NaCl-induced ascorbate-glutathione cycle enzyme activities, and proline improves salt tolerance more than glycinebetaine in tobacco Bright Yellow-2 suspension-cultured cells. — J Plant Physiol. 164: 1457–1468, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Jagendorf, A.T., Takabe, T.: Inducers of glycinebetaine synthesis in barley. — Plant Physiol. 127: 1827–1835, 2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khanna-Chopra, R., Selote, D.S.: Acclimation to drought stress generates oxidative stress tolerance in drought-resistant than-susceptible wheat cultivar under field conditions. Environ. — J. exp. Bot. 60: 276–283, 2007.

    Article  CAS  Google Scholar 

  • Kubala, S., Wojtyla, L., Quinet, M., Lechowska, K., Lutts, S., Garnczarska, M.: Enhanced expression of the proline synthesis gene P5CSA in relation to seed osmopriming improvement of Brassica napus germination under salinity stress. — J. Plant Physiol. 183: 1–12, 2015.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, N., Pal, M., Singh, A., Sairam, R.K., Srivastava, G.C.: Exogenous proline alleviates oxidative stress and increase vase life in rose (Rosa hybrida L. ‘Grand Gala’). — Scientia Hort. 127: 79–85, 2010.

    Article  CAS  Google Scholar 

  • Leopold, A.C., Toenniessen, R.P.W.: Salinity Tolerance in Plants. — Wiley, New York 1984.

    Google Scholar 

  • Moghaieb, R.E.A., Saneoka, H., Fujita, K.: Effect of salinity on osmotic adjustment, glycinebetaine accumulation and the betaine aldehyde dehydrogenase gene expression in two halophytic plants, Salicornia europaea and Suaeda maritima. — Plant Sci. 166:1345–1349, 2004.

    Article  CAS  Google Scholar 

  • Molla, M.R., Ali, M.R., Hasanuzzaman, M., Al-Mamun, M.H., Ahmed, A., Nazim-Ud-Dowla, M.A.N., Rohman, M.M.: Exogenous proline and betaine-induced upregulation of glutathione transferase and glyoxalase in lentil (Lens culinaris) under drought stress. — Not. Bot. Hort. Agrobot. 42: 73–80, 2014.

    CAS  Google Scholar 

  • Mutava, R.N., Prince, K.S.J., Syed, N.H., Song, L., Valliyodan, B., Chen, W., Nguyen, H.T.: Understanding abiotic stress tolerance mechanisms in soybean: a comparative evaluation of soybean response to drought and flooding stress. — Plant Physiol. Biochem. 86: 109–120, 2015.

    Article  CAS  PubMed  Google Scholar 

  • Pandolfi, C., Mancuso, S., Shabala, S.: Physiology of acclimation to salinity stress in pea Pisum sativum. — Environ. exp. Bot. 84: 44–51, 2012.

    Article  CAS  Google Scholar 

  • Pérez-Clemente, R.M., Vives, V., Zandalinas, S.I., López-Climent, M.F., Muñoz, V., Gómez-Cadenas, A.: Biotechnological approaches to study plant responses to stress. — Biomed. Res. Int. 2013: 654120, 2013.

    Article  PubMed  Google Scholar 

  • Pieterse, C.M.J., Leon-Reyes, A., Van der Ent, S., Van Wees, S.C.M.: Networking by small-molecule hormones in plant immolunity. — Nat. Chem. Biol. 5: 308–316, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Porcel, R., Aroca, R., Ruiz-Lozano, J.M.: Salinity stress alleviation using arbuscular mycorrhizal fungi. — Agron. Sustain. Dev. 32: 181–200, 2012.

    Article  CAS  Google Scholar 

  • Radhakrishnan, R., Lee, I.J.: Spermine promotes acclimation to osmotic stress by modifying antioxidant, abscisic acid, and jasmonic acid signals in soybean. — J. Plant Growth Regul. 32: 22–30, 2013.

    Article  CAS  Google Scholar 

  • Schmittgen, T.D., Livak, K.J.: Analyzing real-time PCR data by the comparative CT method. — Nat. Protoc. 3: 1101–1108, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Shabala, S., Cuin, T.A.: Potassium transport and plant salt tolerance. — Physiol. Plant. 133: 651–669, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Stolf-Moreira, R., Medri, M.E., Neumaier, N., Lemos, N.G., Pimenta, J.A., Tobita, S., Brogin, R.L., Marcelino-Guimaraes, F.C., Oliveira, M.C.N., Farias, J.R., Abdelnoor, R.V., Nepomuceno, A.L.: Soybean physiology and gene expression during drought. — Genet. mol. Res. 9: 1946–1956, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Thameur, A., Ferchichi, A., Lopez-Carbonell, M.: Quantification of free and conjugated abscisic acid in five genotypes of barley (Hordeum vulgare L.) under water stress conditions. — South Afr. J. Bot. 77: 222–228, 2011.

    Article  CAS  Google Scholar 

  • Valladares, F., Pearcy, R.W.: Drought can be more critical in the shade than in the sun: a field study of carbon gain and photo-inhibition in a Californian shrub during a dry El Nino year. — Plant Cell Environ. 25: 749–759, 2002.

    Article  Google Scholar 

  • Verbruggen, N., Hermans, C.: Proline accumulation in plants: a review. — Amino Acids 35: 753–759, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki, K., Shinozaki, K.: Organization of cis-acting regulatory elements in osmotic and cold stress-responsive promoters. — Trends Plant Sci. 10: 88–94, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Yang, Y., Qi, M., Mei, C.: Endogenous salicylic acid protects rice plants from oxidative damage caused by aging as well as biotic and abiotic stress. — Plant J. 40: 909–919, 2004.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. L. Zhang or J. F. Liu.

Additional information

Acknowledgments: This research was supported by the project (No. 11ZF096) from the Science and Technology Research and Development Guidance Plan of Baoding City, the Cutting-edge and Characteristic Disciplines of Biology (Botany), and the Key Subject of Biochemistry and Molecular Biology. The authors are grateful to Dr. Priscilla Licht for the critical reading of manuscript.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H.R., Sun, G.W., Dong, L.J. et al. Physiological and molecular responses to drought and salinity in soybean. Biol Plant 61, 557–564 (2017). https://doi.org/10.1007/s10535-017-0703-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-017-0703-1

Additional key words

Navigation